cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A108803 A108802 read mod 4.

Original entry on oeis.org

1, 2, 1, 2, 0, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 3, 0, 3, 0, 3, 2, 0, 2, 1, 2, 1, 2, 1, 2, 2, 2, 3, 0, 0, 2, 0, 2, 1, 2, 3, 0, 0, 0, 0, 2, 2, 0, 0, 2, 1, 2, 2, 0, 0, 2, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 2, 2, 1, 2, 0, 0, 1, 2, 3, 0, 0, 2, 0, 2, 2, 0, 3, 0, 1, 0, 2, 2, 3, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 09 2005

Keywords

Programs

  • Maple
    A000041 := proc(n) combinat[numbpart](n) ; end: A040051 := proc(n) option remember ; A000041(n) mod 2 ; end: A108802 := proc(n) option remember ; add( A040051(i)*A040051(n-i-1),i=0..n-1) ; end: A108803 := proc(n) A108802(n) mod 4 ; end: for n from 1 to 140 do printf("%d, ",A108803(n)) ; od ; # R. J. Mathar, May 08 2007
  • Mathematica
    Function[w, Mod[ListConvolve[#, #], 4] & /@ Map[Take[w, #] &, Range@ Length@ w]]@ Table[Mod[PartitionsP@ n, 2], {n, 0, 105}] // Flatten (* Michael De Vlieger, Jul 16 2016 *)

Formula

a(n) = A000712(n-1)(mod 4). - John M. Campbell, Jul 16 2016

Extensions

More terms from R. J. Mathar, May 08 2007
Showing 1-1 of 1 results.