cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108838 Triangle of Dyck paths counted by number of long interior inclines.

This page as a plain text file.
%I A108838 #64 Sep 01 2024 10:34:16
%S A108838 2,3,2,4,8,2,5,20,15,2,6,40,60,24,2,7,70,175,140,35,2,8,112,420,560,
%T A108838 280,48,2,9,168,882,1764,1470,504,63,2,10,240,1680,4704,5880,3360,840,
%U A108838 80,2,11,330,2970,11088,19404,16632,6930,1320,99,2
%N A108838 Triangle of Dyck paths counted by number of long interior inclines.
%C A108838 T(n,k) is the number of Dyck n-paths (A000108) containing k long interior inclines. An incline is an ascent or a descent where an ascent (resp. descent) is a maximal sequence of contiguous upsteps (resp. downsteps). An incline is long if it consists of at least 2 steps and is interior if it does not start or end the path.
%C A108838 T(n,k) is the number of Dyck (n+1)-paths whose last descent has length 2 and which contain n-k peaks. For example T(3,0)=3 counts UUDUDUDD, UDUUDUDD, UDUDUUDD. - _David Callan_, Jul 03 2006
%C A108838 T(n,k) is the number of parallelogram polyominoes of semiperimeter n+1 having k corners. - _Emeric Deutsch_, Oct 09 2008
%C A108838 T(n,k) is the number of rooted ordered trees with n non-root nodes and k leaves; see example. - _Joerg Arndt_, Aug 18 2014
%H A108838 Michael De Vlieger, <a href="/A108838/b108838.txt">Table of n, a(n) for n = 2..11176</a> (rows 2 <= n <= 150, flattened)
%H A108838 Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, <a href="https://arxiv.org/abs/2010.11157">Refined Catalan and Narayana cyclic sieving</a>, arXiv:2010.11157 [math.CO], 2020.
%H A108838 Tewodros Amdeberhan, Victor H. Moll, and Christophe Vignat, <a href="https://arxiv.org/abs/1202.1203">A probabilistic interpretation of a sequence related to Narayana Polynomials</a>, arXiv:1202.1203 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 19 2012
%H A108838 Tewodros Amdeberhan, Victor H. Moll, and Christophe Vignat, <a href="https://web.math.rochester.edu/misc/ojac/vol8/68.pdf">A probabilistic interpretation of a sequence related to Narayana Polynomials</a>, Online Journal of Analytic Combinatorics, Issue 8, 2013.
%H A108838 David Callan, <a href="https://arxiv.org/abs/math/0502532">Some Identities for the Catalan and Fine Numbers</a>, arXiv:math/0502532 [math.CO], 2005.
%H A108838 M. Delest, J. P. Dubernard, and I. Dutour, <a href="http://dx.doi.org/10.1006/jsco.1995.1062">Parallelogram polyominoes and corners</a>, J. Symbolic Computation, 20(1995),503-515. [From _Emeric Deutsch_, Oct 09 2008]
%H A108838 M. P. Delest, D. Gouyou-Beauchamps, and B. Vauquelin, <a href="http://dx.doi.org/10.1007/BF01788555">Enumeration of parallelogram polyominoes with given bond and site parameter</a>, Graphs and Combinatorics, 3 (1987), 325-339.
%H A108838 Emeric Deutsch, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00371-9">Dyck path enumeration</a>, Discrete Math., 204, 1999, 167-202.
%H A108838 T. Doslic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Doslic/doslic6.html">Handshakes across a (round) table</a>, JIS 13 (2010) #10.2.7.
%H A108838 Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, <a href="https://arxiv.org/abs/2408.15111">Counting pattern-avoiding permutations by big descents</a>, arXiv:2408.15111 [math.CO], 2024. See pp. 6, 18, 27.
%F A108838 T(n, k) = 2*binomial(n+1, k+2)*binomial(n-2, k)/(n+1).
%F A108838 G.f.: G(z, t) = Sum_{n>=1, k>=0} T(n, k)*z^n*t^k satisfies z - ( (1-z)^2 - (2*t-t^2)*z^2 )*G + (t^2*z)*G^2 = 0.
%F A108838 G.f.: 1+z(1+r)^2, where r=r(t,z) is the Narayana function defined by (1+r)*(1+tr)z=r, r(t,0)=0. - _Emeric Deutsch_, Jul 23 2006
%F A108838 For n >= 0, the row polynomials Sum_{k=0..n} T(n+2,k)*x^k = (2/(n+1))*(1-x)^n*P(n,2,1,(1+x)/(1-x)), where P(n,a,b,x) denotes the Jacobi polynomial. It follows that the row polynomials have negative real zeros. - _Peter Bala_, Jan 21 2008
%F A108838 The trivariate g.f. G=G(t,s,z) of Dyck paths with respect to number of DUU's (marked by t), number of DDU's (marked by s) and semilength (marked by z) satisfies G = 1 + z*G + z^2*(1+t*(G-1))*(1+s*(G-1))/(1-z*(1+t*s*(G-1))) (the number of long interior inclines is equal to the number of DUU and DDU's). - _Emeric Deutsch_, Oct 09 2008
%F A108838 Recurrence: T(n, k) = T(n, k-1)*(n-1-k)*(n-k)/(k*(k+2)) for k > 0 and n >= 2. - _Werner Schulte_, Jan 04 2017
%F A108838 The array can be extended to negative values of n: T(-n,k) = 2*binomial(-n+1, k+2)*binomial(-n-2, k)/(-n+1) = -A145596(n+k,k+1) for n >= 2. - _Peter Bala_, Apr 26 2022
%e A108838 Table begins
%e A108838 \ k..0....1....2....3....4....5
%e A108838 n\
%e A108838 2 |..2
%e A108838 3 |..3....2
%e A108838 4 |..4....8....2
%e A108838 5 |..5...20...15....2
%e A108838 6 |..6...40...60...24....2
%e A108838 7 |..7...70..175..140...35....2
%e A108838 The paths UUUDDD, UUDUDD, UDUDUD have no long interior inclines; so T(3,0)=3.
%e A108838 From _Joerg Arndt_, Aug 18 2014: (Start)
%e A108838 The rooted ordered trees with n=3 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are:
%e A108838 :
%e A108838 :     1:  [ 0 1 1 1 ]   2
%e A108838 :  O--o
%e A108838 :  .--o
%e A108838 :  .--o
%e A108838 :
%e A108838 :     2:  [ 0 1 1 2 ]   2
%e A108838 :  O--o
%e A108838 :  .--o--o
%e A108838 :
%e A108838 :     3:  [ 0 1 2 1 ]   1
%e A108838 :  O--o--o
%e A108838 :  .--o
%e A108838 :
%e A108838 :     4:  [ 0 1 2 2 ]   1
%e A108838 :  O--o--o
%e A108838 :     .--o
%e A108838 :
%e A108838 :     5:  [ 0 1 2 3 ]   1
%e A108838 :  O--o--o--o
%e A108838 :
%e A108838 This gives [3, 2], row n=3 of the triangle.
%e A108838 (End)
%p A108838 T:=(n,k)->2*binomial(n-1,k)*binomial(n,k+2)/(n-1): for n from 2 to 11 do seq(T(n,k),k=0..n-2) od; # yields sequence in triangular form; _Emeric Deutsch_, Jul 23 2006
%t A108838 T[n_, 0] = n;
%t A108838 T[n_, k_] := T[n, k] = If[k == n-2, 2, T[n, k-1](n-k-1)(n-k)/(k(k+2))];
%t A108838 Table[T[n, k], {n, 2, 11}, {k, 0, n-2}] // Flatten (* _Jean-François Alcover_, Jul 27 2018, after _Werner Schulte_ *)
%Y A108838 Row sums are the Catalan numbers A000108. Column k=1 is A007290, k=2 is A006470. The Narayana numbers A001263 count Dyck paths by number of long nonterminal inclines. A091894 (Touchard distribution) counts Dyck paths by number of long nonterminal descents.
%Y A108838 Cf. A145596.
%K A108838 nonn,tabl
%O A108838 2,1
%A A108838 _David Callan_, Jul 25 2005