This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108852 #39 Nov 04 2024 16:31:10 %S A108852 1,3,4,5,5,6,6,6,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9, %T A108852 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11, %U A108852 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11 %N A108852 Number of Fibonacci numbers <= n. %C A108852 1 is counted twice as a Fibonacci number: F(1) = F(2) = 1. - _Alois P. Heinz_, Nov 04 2024 %H A108852 Michael De Vlieger, <a href="/A108852/b108852.txt">Table of n, a(n) for n = 0..10000</a> %H A108852 Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, <a href="https://doi.org/10.2478/auom-2021-0002">On some new results for the generalised Lucas sequences</a>, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36. %F A108852 G.f.: (Sum_{n>=0} x^Fibonacci(n))/(1-x). - _Vladeta Jovovic_, Nov 27 2005 %F A108852 a(n) = 1+floor(log_phi((sqrt(5)*n+sqrt(5*n^2+4))/2)), n>=0, where phi is the golden ratio. Alternatively, a(n) = 1+floor(arcsinh(sqrt(5)*n/2)/log(phi)). Also a(n) = A072649(n)+2. - _Hieronymus Fischer_, May 02 2007 %F A108852 a(n) = 1+floor(log_phi(sqrt(5)*n+1)), n>=0, where phi is the golden ratio. - _Hieronymus Fischer_, Jul 02 2007 %p A108852 a:= proc(n) option remember; `if`(n<2, 2*n+1, a(n-1)+ %p A108852 (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2)) %p A108852 end: %p A108852 seq(a(n), n=0..100); # _Alois P. Heinz_, Nov 04 2024 %t A108852 fibPi[n_] := 1 + Floor[ Log[ GoldenRatio, 1 + n*Sqrt@ 5]]; Array[fibPi, 80, 0] (* _Robert G. Wilson v_, Aug 03 2014 *) %o A108852 (Haskell) fibs :: [Integer] %o A108852 fibs = 0 : 1 : zipWith (+) fibs (tail fibs) %o A108852 fibs_to :: Integer -> Integer %o A108852 fibs_to n = length $ takeWhile (<= n) fibs %o A108852 (Python) %o A108852 def A108852(n): %o A108852 a, b, c = 0, 1, 0 %o A108852 while a <= n: %o A108852 a, b = b, a+b %o A108852 c += 1 %o A108852 return c # _Chai Wah Wu_, Nov 04 2024 %Y A108852 Cf. A000045, A001622, A060384, A072649. %Y A108852 Partial sums of A104162. %K A108852 nonn %O A108852 0,2 %A A108852 Michael C. Vanier (mvanier(AT)cs.caltech.edu), Nov 27 2005