cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108896 Numbers whose outer two digits are 9's and inner digits are 4's.

This page as a plain text file.
%I A108896 #30 Jul 31 2022 23:11:10
%S A108896 949,9449,94449,944449,9444449,94444449,944444449,9444444449,
%T A108896 94444444449,944444444449,9444444444449,94444444444449,
%U A108896 944444444444449,9444444444444449,94444444444444449,944444444444444449,9444444444444444449,94444444444444444449
%N A108896 Numbers whose outer two digits are 9's and inner digits are 4's.
%C A108896 All terms are composite.
%C A108896 From _Sergio Pimentel_, Jul 26 2022: (Start)
%C A108896 a(n) is divisible by:
%C A108896   13 if n == 1 (mod 6).
%C A108896   11 if n == 0,2,4 (mod 6).
%C A108896    3 if n == 0,3 (mod 6).
%C A108896    7 if n == 5 (mod 6). (End)
%H A108896 Cino Hilliard, <a href="https://web.archive.org/web/20080621164208/http://groups.msn.com/BC2LCC/94444449notprime.msnw">Proof 94..49</a>
%H A108896 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10).
%F A108896 a(n) = 9*10^(n+1) + 9 + 40*(10^n-1)/9.
%F A108896 From _Chai Wah Wu_, Jul 27 2022: (Start)
%F A108896 a(n) = 11*a(n-1) - 10*a(n-2) for n > 2.
%F A108896 G.f.: x*(949 - 990*x)/((x - 1)*(10*x - 1)). (End)
%t A108896 Table[10*FromDigits[PadRight[{9},n,4]]+9,{n,2,20}] (* _Harvey P. Dale_, Apr 02 2018 *)
%o A108896 (PARI) S(n,r,m)=for(x=1,n,y=m*10^(x+1)+m+r*10*(10^x-1)/9;print1(y","))
%o A108896 (Python)
%o A108896 def a(n): return int('9' + '4'*n + '9')
%o A108896 print([a(n) for n in range(1, 19)]) # _Michael S. Branicky_, Jul 26 2022
%Y A108896 Cf. A108903, A108904.
%K A108896 easy,nonn,base
%O A108896 1,1
%A A108896 _Cino Hilliard_, Jul 16 2005