This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108896 #30 Jul 31 2022 23:11:10 %S A108896 949,9449,94449,944449,9444449,94444449,944444449,9444444449, %T A108896 94444444449,944444444449,9444444444449,94444444444449, %U A108896 944444444444449,9444444444444449,94444444444444449,944444444444444449,9444444444444444449,94444444444444444449 %N A108896 Numbers whose outer two digits are 9's and inner digits are 4's. %C A108896 All terms are composite. %C A108896 From _Sergio Pimentel_, Jul 26 2022: (Start) %C A108896 a(n) is divisible by: %C A108896 13 if n == 1 (mod 6). %C A108896 11 if n == 0,2,4 (mod 6). %C A108896 3 if n == 0,3 (mod 6). %C A108896 7 if n == 5 (mod 6). (End) %H A108896 Cino Hilliard, <a href="https://web.archive.org/web/20080621164208/http://groups.msn.com/BC2LCC/94444449notprime.msnw">Proof 94..49</a> %H A108896 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10). %F A108896 a(n) = 9*10^(n+1) + 9 + 40*(10^n-1)/9. %F A108896 From _Chai Wah Wu_, Jul 27 2022: (Start) %F A108896 a(n) = 11*a(n-1) - 10*a(n-2) for n > 2. %F A108896 G.f.: x*(949 - 990*x)/((x - 1)*(10*x - 1)). (End) %t A108896 Table[10*FromDigits[PadRight[{9},n,4]]+9,{n,2,20}] (* _Harvey P. Dale_, Apr 02 2018 *) %o A108896 (PARI) S(n,r,m)=for(x=1,n,y=m*10^(x+1)+m+r*10*(10^x-1)/9;print1(y",")) %o A108896 (Python) %o A108896 def a(n): return int('9' + '4'*n + '9') %o A108896 print([a(n) for n in range(1, 19)]) # _Michael S. Branicky_, Jul 26 2022 %Y A108896 Cf. A108903, A108904. %K A108896 easy,nonn,base %O A108896 1,1 %A A108896 _Cino Hilliard_, Jul 16 2005