cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108914 Number of regions formed inside square by diagonals and the segments joining the vertices to the points dividing the sides into n equal length segments.

This page as a plain text file.
%I A108914 #20 Jul 22 2022 10:36:57
%S A108914 4,32,96,188,332,460,712,916,1204,1488,1904,2108,2716,3080,3532,4068,
%T A108914 4772,5140,6016,6392,7188,7992,8936,9260,10484,11312,12208,12968,
%U A108914 14396,14660,16504,17220,18436,19680,20756,21548,23692,24728,25992,26868,29204,29704,32176,33068,34444,36552,38552
%N A108914 Number of regions formed inside square by diagonals and the segments joining the vertices to the points dividing the sides into n equal length segments.
%H A108914 Scott R. Shannon, <a href="/A108914/b108914.txt">Table of n, a(n) for n = 1..100</a>
%H A108914 Scott R. Shannon, <a href="/A108914/a108914.jpg">Image for n = 2</a>.
%H A108914 Scott R. Shannon, <a href="/A108914/a108914_1.jpg">Image for n = 3</a>.
%H A108914 Scott R. Shannon, <a href="/A108914/a108914_2.jpg">Image for n = 4</a>.
%H A108914 Scott R. Shannon, <a href="/A108914/a108914_3.jpg">Image for n = 5</a>.
%H A108914 Scott R. Shannon, <a href="/A108914/a108914_4.jpg">Image for n = 6</a>.
%H A108914 Scott R. Shannon, <a href="/A108914/a108914_5.jpg">Image for n = 11</a>.
%H A108914 Scott R. Shannon, <a href="/A108914/a108914_6.jpg">Image for n = 30</a>.
%H A108914 L. Smiley, <a href="http://www.math.uaa.alaska.edu/~smiley/square6b.jpg">The case n=6</a>. Note 3- and 4-fold off-diagonal concurrencies.
%H A108914 L. Smiley, <a href="http://www.math.uaa.alaska.edu/~smiley/square7b.jpg">The case n=7</a>. Note there are no off-diagonal concurrencies.
%F A108914 If n=1 or n is prime, a(n)=18*n^2-26*n+12.
%F A108914 If n is composite, vanishing regions from 3- and 4-fold concurrency must be subtracted.
%F A108914 a(n) = A355948(n) - A355949(n) + 1 by Euler's formula.
%Y A108914 A092098 is the corresponding count for triangles.
%Y A108914 A355949 (vertices), A355948 (edges), A355992 (k-gons), A355838, A355798.
%K A108914 nonn
%O A108914 1,1
%A A108914 _Len Smiley_ and Brian Wick ( mathclub(AT)math.uaa.alaska.edu ), Jul 19 2005
%E A108914 a(23), a(33) corrected, a(41) and above by _Scott R. Shannon_, Jul 22 2022