This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108914 #20 Jul 22 2022 10:36:57 %S A108914 4,32,96,188,332,460,712,916,1204,1488,1904,2108,2716,3080,3532,4068, %T A108914 4772,5140,6016,6392,7188,7992,8936,9260,10484,11312,12208,12968, %U A108914 14396,14660,16504,17220,18436,19680,20756,21548,23692,24728,25992,26868,29204,29704,32176,33068,34444,36552,38552 %N A108914 Number of regions formed inside square by diagonals and the segments joining the vertices to the points dividing the sides into n equal length segments. %H A108914 Scott R. Shannon, <a href="/A108914/b108914.txt">Table of n, a(n) for n = 1..100</a> %H A108914 Scott R. Shannon, <a href="/A108914/a108914.jpg">Image for n = 2</a>. %H A108914 Scott R. Shannon, <a href="/A108914/a108914_1.jpg">Image for n = 3</a>. %H A108914 Scott R. Shannon, <a href="/A108914/a108914_2.jpg">Image for n = 4</a>. %H A108914 Scott R. Shannon, <a href="/A108914/a108914_3.jpg">Image for n = 5</a>. %H A108914 Scott R. Shannon, <a href="/A108914/a108914_4.jpg">Image for n = 6</a>. %H A108914 Scott R. Shannon, <a href="/A108914/a108914_5.jpg">Image for n = 11</a>. %H A108914 Scott R. Shannon, <a href="/A108914/a108914_6.jpg">Image for n = 30</a>. %H A108914 L. Smiley, <a href="http://www.math.uaa.alaska.edu/~smiley/square6b.jpg">The case n=6</a>. Note 3- and 4-fold off-diagonal concurrencies. %H A108914 L. Smiley, <a href="http://www.math.uaa.alaska.edu/~smiley/square7b.jpg">The case n=7</a>. Note there are no off-diagonal concurrencies. %F A108914 If n=1 or n is prime, a(n)=18*n^2-26*n+12. %F A108914 If n is composite, vanishing regions from 3- and 4-fold concurrency must be subtracted. %F A108914 a(n) = A355948(n) - A355949(n) + 1 by Euler's formula. %Y A108914 A092098 is the corresponding count for triangles. %Y A108914 A355949 (vertices), A355948 (edges), A355992 (k-gons), A355838, A355798. %K A108914 nonn %O A108914 1,1 %A A108914 _Len Smiley_ and Brian Wick ( mathclub(AT)math.uaa.alaska.edu ), Jul 19 2005 %E A108914 a(23), a(33) corrected, a(41) and above by _Scott R. Shannon_, Jul 22 2022