This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108949 #33 Jan 14 2021 02:03:29 %S A108949 0,0,1,0,2,1,3,3,6,7,10,14,19,26,33,45,58,77,97,127,161,205,259,326, %T A108949 411,510,639,786,980,1197,1482,1800,2216,2677,3275,3942,4793,5749, %U A108949 6951,8309,9995,11912,14259,16944,20194,23926,28402,33559,39687,46767,55120,64780,76110,89222 %N A108949 Number of partitions of n with more even parts than odd parts. %H A108949 Alois P. Heinz, <a href="/A108949/b108949.txt">Table of n, a(n) for n = 0..1000</a> %H A108949 B. Kim, E. Kim, and J. Lovejoy, <a href="https://doi.org/10.1016/j.ejc.2020.103159">Parity bias in partitions</a>, European J. Combin., 89 (2020), 103159, 19 pp. %F A108949 a(n) = A171966(n) - A045931(n) = A171967(n) - A108950(n). - _Reinhard Zumkeller_, Jan 21 2010 %F A108949 a(n) = Sum_{k=-floor(n/2)+(n mod 2)..-1} A240009(n,k). - _Alois P. Heinz_, Mar 30 2014 %F A108949 G.f.: (Product_{k>=1} 1/(1-x^(2*k-1)))*Sum_{n>=1} q^(2*n^2)*(1-q^(n))/Product_{k=1..n} (1-q^(2*k))^2. - _Jeremy Lovejoy_, Jan 12 2021 %e A108949 a(6) = 3: {[6], [4,2], [2,2,2]}; a(7) = 3: {[4,2,1], [3,2,2], [2,2,2,1]}. %p A108949 with(combinat,partition): %p A108949 evnbigrodd:=proc(n::nonnegint) %p A108949 local evencount,oddcount,bigcount,parts,i,j; %p A108949 bigcount:=0; %p A108949 partitions:=partition(n); %p A108949 for i from 1 to nops(partitions) do %p A108949 evencount:=0; %p A108949 oddcount:=0; %p A108949 for j from 1 to nops(partitions[i]) do %p A108949 if (op(j,partitions[i]) mod 2 <>0) then %p A108949 oddcount:=oddcount+1 %p A108949 fi; %p A108949 if (op(j,partitions[i]) mod 2 =0) then %p A108949 evencount:=evencount+1 %p A108949 fi %p A108949 od; %p A108949 if (evencount>oddcount) then %p A108949 bigcount:=bigcount+1 %p A108949 fi %p A108949 od; %p A108949 return(bigcount) %p A108949 end proc; %p A108949 seq(evnbigrodd(i),i=1..42); %p A108949 # second Maple program: %p A108949 b:= proc(n, i, t) option remember; `if`(n=0, %p A108949 `if`(t<0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+ %p A108949 `if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))) %p A108949 end: %p A108949 a:= n-> b(n$2, 0): %p A108949 seq(a(n), n=0..80); # _Alois P. Heinz_, Mar 30 2014 %t A108949 p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, _?OddQ] == Count[#, _?EvenQ] &]; t = Table[p[n], {n, 0, 10}] (* partitions of n with # odd parts = # even parts *) %t A108949 TableForm[t] (* partitions, vertical format *) %t A108949 Table[Length[p[n]], {n, 0, 30}] (* A045931 *) %t A108949 (* _Peter J. C. Moses_, Mar 10 2014 *) %t A108949 b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t<0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t+(2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Nov 02 2015, after _Alois P. Heinz_ *) %o A108949 (PARI) a(n) = {nb = 0; forpart(p=n, nb += (2*#(select(x->x%2, Vec(p))) < #p);); nb;} \\ _Michel Marcus_, Nov 02 2015 %Y A108949 Cf. A045931 for #even parts = #odd parts, A108950 for #even parts < #odd parts. %Y A108949 Cf. A171966, A130780. - _Reinhard Zumkeller_, Jan 21 2010 %K A108949 nonn %O A108949 0,5 %A A108949 _Len Smiley_, Jul 21 2005 %E A108949 More terms from _Joerg Arndt_, Oct 04 2012