cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A108537 Concatenation of palindrome k and its 10's complement is prime.

Original entry on oeis.org

1, 3, 7, 77, 99, 151, 161, 333, 707, 727, 737, 757, 949, 969, 989, 1441, 1551, 1771, 1881, 3003, 7227, 7667, 7997, 9009, 9339, 9999, 10001, 10101, 10701, 11111, 11611, 11711, 12221, 12921, 13231, 14341, 14841, 14941, 15851, 16661, 16961, 17071
Offset: 1

Views

Author

Jason Earls, Jul 25 2005

Keywords

Comments

Contains 10^k-1 for k in A056696, and (10^k-1)/9 for k in A108966. - Robert Israel, Jan 22 2019

Examples

			a(7)=161 because 1000-161 = 839 and 161839 is prime.
		

Crossrefs

Programs

  • Maple
    N:= 5: # for terms of <= N digits
    digrev:= proc(n) local L,i;
       L:= convert(n,base,10);
       add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    Res:= 1,3,7,9:
    for d from 2 to N do
      if d::even then
        m:= d/2;
        Res:= Res, seq(seq((i*10^(m-1)+j)*10^m + digrev(i*10^(m-1)+j), j=0..10^(m-1)-1),i=[1,3,7,9]);
      else
        m:= (d-1)/2;
        Res:= Res, seq(seq(seq((i*10^(m-1)+j)*10^(m+1)+y*10^m+digrev(i*10^(m-1)+j), y=0..9), j=0..10^(m-1)-1),i=[1,3,7,9]);
      fi
    od:
    filter:= proc(t) local r;
      r:= 10^(ilog10(t)+1)-t;
      isprime(t*10^(ilog10(r)+1)+r)
    end proc:
    select(filter, [Res]); # Robert Israel, Jan 22 2019
Showing 1-1 of 1 results.