A108974 Sort the primes (except 2) according to the multiplicative order of 2 modulo that prime. If two primes have the same order of 2, they are arranged numerically.
3, 7, 5, 31, 127, 17, 73, 11, 23, 89, 13, 8191, 43, 151, 257, 131071, 19, 524287, 41, 337, 683, 47, 178481, 241, 601, 1801, 2731, 262657, 29, 113, 233, 1103, 2089, 331, 2147483647, 65537, 599479, 43691, 71, 122921, 37, 109, 223, 616318177, 174763, 79
Offset: 1
Keywords
Examples
The order of 2 modulo 3 is 2 and the order of 2 modulo 7 is 3. So 3 comes before 7.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..4275
- G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
- Jeppe Stig Nielsen, A108974 arranged as an irregular array.
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265-284.
Programs
-
Mathematica
a = 1; DeleteDuplicates[Flatten[#[[All, 1]] & /@ FactorInteger[Table[a = 2 a + 1, {i, 1, 30}]]]] (* Horst H. Manninger, Mar 20 2021 *)
-
PARI
do(n)=my(v=List(),P=1,g,t,f); for(k=2,n, t=2^k-1; g=P; while((g=gcd(g,t))>1, t/=g); f=factor(t)[,1]; for(i=1,#f, listput(v,f[i])); P*=t); Vec(v) \\ Charles R Greathouse IV, Sep 23 2016
Extensions
More terms from Martin Fuller, Sep 25 2006
Comments