This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108983 #33 Apr 10 2024 03:48:16 %S A108983 1,7,41,247,1481,8887,53321,319927,1919561,11517367,69104201, %T A108983 414625207,2487751241,14926507447,89559044681,537354268087, %U A108983 3224125608521,19344753651127,116068521906761,696411131440567,4178466788643401 %N A108983 Inverse binomial transform of A003950. %C A108983 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-4, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=charpoly(A,2). [_Milan Janjic_, Jan 27 2010] %H A108983 Vincenzo Librandi, <a href="/A108983/b108983.txt">Table of n, a(n) for n = 0..1000</a> %H A108983 J. East and R. D. Gray, <a href="http://arxiv.org/abs/1404.2359">Idempotent generators in finite partition monoids and related semigroups</a>, arXiv:1404.2359 [math.GR], 2014-2016. %H A108983 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,6). %F A108983 a(n) = 5a(n-1) + 6a(n-2), a(0) = 1, a(1) = 7. %F A108983 a(2n) = 6a(2n-1) - 1; a(2n+1) = 6a(2n) + 1. %F A108983 O.g.f.: -(1+2x)/[(1+x)(6x-1)]. - _R. J. Mathar_, Apr 02 2008 %p A108983 seq(-((-1)^n-8*6^n)/7, n=0..100); # _Robert Israel_, Aug 27 2014 %t A108983 CoefficientList[Series[-(1 + 2 x)/((1 + x) (6 x - 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Aug 27 2014 *) %o A108983 (Magma) I:=[1,7]; [n le 2 select I[n] else 5*Self(n-1)+6*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Aug 27 2014 %Y A108983 Cf. A003950. %K A108983 nonn %O A108983 0,2 %A A108983 _Philippe Deléham_, Jul 23 2005 %E A108983 More terms from _R. J. Mathar_, Apr 02 2008