cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109013 a(n) = gcd(n,10).

This page as a plain text file.
%I A109013 #22 Oct 18 2019 03:59:25
%S A109013 10,1,2,1,2,5,2,1,2,1,10,1,2,1,2,5,2,1,2,1,10,1,2,1,2,5,2,1,2,1,10,1,
%T A109013 2,1,2,5,2,1,2,1,10,1,2,1,2,5,2,1,2,1,10,1,2,1,2,5,2,1,2,1,10,1,2,1,2,
%U A109013 5,2,1,2,1,10,1,2,1,2,5,2,1,2,1,10,1,2,1,2,5,2,1,2,1,10,1,2,1,2,5,2,1
%N A109013 a(n) = gcd(n,10).
%F A109013 a(n) = 1 + [2|n] + 4*[5|n] + 4*[10|n], where [x|y] = 1 when x divides y, 0 otherwise.
%F A109013 a(n) = a(n-10).
%F A109013 Multiplicative with a(p^e, 10) = gcd(p^e, 10). - _David W. Wilson_, Jun 12 2005
%F A109013 G.f.: ( -10 - x - 2*x^2 - x^3 - 2*x^4 - 5*x^5 - 2*x^6 - x^7 - 2*x^8 - x^9 ) / ( (x-1)*(1+x)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x+1) ). - _R. J. Mathar_, Apr 04 2011
%F A109013 Dirichlet g.f.: zeta(s)*(1 + 1/2^s + 4/5^s + 4/10^s). - _R. J. Mathar_, Apr 04 2011
%F A109013 a(n) = ((n-1) mod 2 + 1)*(4*floor(((n-1) mod 5)/4) + 1). - _Gary Detlefs_, Dec 28 2011
%t A109013 GCD[Range[0,100],10] (* _Harvey P. Dale_, Jul 11 2011 *)
%Y A109013 Cf. A109004.
%K A109013 nonn,easy,mult
%O A109013 0,1
%A A109013 _Mitch Harris_