This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109042 #26 Mar 24 2025 19:45:59 %S A109042 0,0,0,0,1,0,0,2,2,0,0,3,2,3,0,0,4,6,6,4,0,0,5,4,3,4,5,0,0,6,10,12,12, %T A109042 10,6,0,0,7,6,15,4,15,6,7,0,0,8,14,6,20,20,6,14,8,0,0,9,8,21,12,5,12, %U A109042 21,8,9,0,0,10,18,24,28,30,30,28,24,18,10,0,0,11,10,9,8,35,6,35,8,9,10,11,0 %N A109042 Square array read by antidiagonals: A(n, k) = lcm(n, k) for n >= 0, k >= 0. %H A109042 Alois P. Heinz, <a href="/A109042/b109042.txt">Antidiagonals n = 0..140, flattened</a> %F A109042 lcm(n, k) = n*k / gcd(n, k) for (n, k) != (0, 0). %e A109042 Seen as an array: %e A109042 [0] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A109042 [1] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... %e A109042 [2] 0, 2, 2, 6, 4, 10, 6, 14, 8, 18, ... %e A109042 [3] 0, 3, 6, 3, 12, 15, 6, 21, 24, 9, ... %e A109042 [4] 0, 4, 4, 12, 4, 20, 12, 28, 8, 36, ... %e A109042 [5] 0, 5, 10, 15, 20, 5, 30, 35, 40, 45, ... %e A109042 [6] 0, 6, 6, 6, 12, 30, 6, 42, 24, 18, ... %e A109042 [7] 0, 7, 14, 21, 28, 35, 42, 7, 56, 63, ... %e A109042 [8] 0, 8, 8, 24, 8, 40, 24, 56, 8, 72, ... %e A109042 [9] 0, 9, 18, 9, 36, 45, 18, 63, 72, 9, ... %e A109042 . %e A109042 Seen as a triangle T(n, k) = lcm(n - k, k). %e A109042 [0] 0; %e A109042 [1] 0, 0; %e A109042 [2] 0, 1, 0; %e A109042 [3] 0, 2, 2, 0; %e A109042 [4] 0, 3, 2, 3, 0; %e A109042 [5] 0, 4, 6, 6, 4, 0; %e A109042 [6] 0, 5, 4, 3, 4, 5, 0; %e A109042 [7] 0, 6, 10, 12, 12, 10, 6, 0; %e A109042 [8] 0, 7, 6, 15, 4, 15, 6, 7, 0; %e A109042 [9] 0, 8, 14, 6, 20, 20, 6, 14, 8, 0; %p A109042 T := (n, k) -> ilcm(n - k, k): %p A109042 for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # _Peter Luschny_, Mar 24 2025 %Y A109042 Rows A000027, A109043, A109044, A109045, A109046, A109047, A109048, A109049, A109050, A109051, A109052, A109053, A006580 (row sums of triangle), A001477 (main diagonal, central terms). %Y A109042 Variants: A003990 is (1, 1) based, A051173 (T(n,k) = lcm(n,k)). %K A109042 nonn,easy,tabl %O A109042 0,8 %A A109042 _Mitch Harris_, Jun 18 2005