This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109084 #9 Oct 02 2023 13:28:29 %S A109084 1,-1,-2,-5,-17,-63,-253,-1062,-4615,-20570,-93538,-432211,-2023567, %T A109084 -9578815,-45767162,-220431025,-1069079067,-5216655257,-25592441875, %U A109084 -126157044454,-624560659184,-3103962569509,-15480272621533,-77450458331100,-388627340240958,-1955249529839424 %N A109084 G.f. A(x) satisfies: A(x) = 1/G000041(x/A(x)) where G000041(x) is the g.f. of the partition numbers A000041. %C A109084 Note: coefficient [x^n] A(x)^n = -A000203(n) (sum of divisors of n) for n>0. %H A109084 Vaclav Kotesovec, <a href="/A109084/b109084.txt">Table of n, a(n) for n = 0..1000</a> %F A109084 G.f.: A(x) = x/series_reversion(x*eta(x)). G.f.: A(x) = 1/G109085(x) where G109085(x) is g.f. of A109085. %F A109084 a(n) ~ -c * d^n / n^(3/2), where d = A270915 = 5.35270133348664268777241581416... and c = 0.146705445870000769931272287955221766131167... - _Vaclav Kotesovec_, May 13 2018 %e A109084 The initial terms [x^0] through [x^n] of n-th self-convolution %e A109084 are persistently small: %e A109084 A^0: 1; %e A109084 A^1: 1,-1; %e A109084 A^2: 1,-2,-3; %e A109084 A^3: 1,-3,-3,-4; %e A109084 A^4: 1,-4,-2,0,-7; %e A109084 A^5: 1,-5,0,5,0,-6; %e A109084 A^6: 1,-6,3,10,3,6,-12; %e A109084 A^7: 1,-7,7,14,0,7,0,-8; %e A109084 A^8: 1,-8,12,16,-10,0,-8,8,-15; %e A109084 A^9: 1,-9,18,15,-27,-9,-21,0,0,-13; %t A109084 (* Calculation of constant c: *) val = Sqrt[r*s^5*(-1 + s/r)*(Log[r/s]^2 / (2*Pi*(2*s^3*(-s*Log[1 - r/s] + ArcTanh[1 - 2*r/s] * (2*r - (r - s)*(Log[1 - r/s] - 2*Log[r/s]))) + (r - s)*(s^3*(2 - 2*Log[1 - r/s] + 3*Log[r/s]) * QPolyGamma[0, 1, r/s] - s^3*QPolyGamma[0, 1, r/s]^2 + s^3*QPolyGamma[1, 1, r/s] + r*Log[r/s]*(r*Log[r/s] * Derivative[0, 2][QPochhammer][r/s, r/s] - 2*s^2*Derivative[0, 0, 1][QPolyGamma][0, 1, r/s])))))] /. FindRoot[{QPochhammer[r/s] == s, (Log[1 - r/s] + QPolyGamma[0, 1, r/s])/Log[r/s] == 1 + (r*Derivative[0, 1][QPochhammer][r/s, r/s])/s^2}, {r, 1/5}, {s, 1/2}, WorkingPrecision -> 1000]; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3] (* _Vaclav Kotesovec_, Oct 02 2023 *) %o A109084 (PARI) a(n)=polcoeff(x/serreverse(x*eta(x+x*O(x^n))),n) %Y A109084 Cf. A109085, A000041, A000203. %K A109084 sign %O A109084 0,3 %A A109084 _Paul D. Hanna_, Jun 18 2005