This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109106 #14 Jun 11 2021 19:01:05 %S A109106 2,20,250,3250,42500,556250,7281250,95312500,1247656250,16332031250, %T A109106 213789062500,2798535156250,36633300781250,479536132812500, %U A109106 6277209472656250,82169738769531250,1075615844726562500 %N A109106 a(n) = (1/sqrt(5))*((sqrt(5) + 1)*((15 + 5*sqrt(5))/2)^(n-1) + (sqrt(5) - 1)*((15 - 5*sqrt(5))/2)^(n-1)). %C A109106 Kekulé numbers for certain benzenoids. %D A109106 S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 215, K{T_m}). %F A109106 G.f.: 2z(1-5z)/(1 - 15z + 25z^2). %F A109106 From _Johannes W. Meijer_, Jul 01 2010: (Start) %F A109106 a(n) = A178381(4*n+2). %F A109106 Lim_{k->infinity} a(n+k)/a(k) = (A020876(2*n) + 5*A039717(2*n-2)*sqrt(5))/2. %F A109106 Lim_{n->infinity} A020876(2*n)/(5*A039717(2*n-2)) = sqrt(5). %F A109106 (End) %F A109106 a(n) = 2*5^(n-1)*Fibonacci(2*n-1). - _Ehren Metcalfe_, Apr 21 2018 %p A109106 a:=n->(1/sqrt(5))*((sqrt(5)+1)*((15+5*sqrt(5))/2)^(n-1)+(sqrt(5)-1)*((15-5*sqrt(5))/2)^(n-1)): seq(expand(a(n)),n=1..19); %Y A109106 Cf. A179135. - _Johannes W. Meijer_, Jul 01 2010 %K A109106 nonn %O A109106 1,1 %A A109106 _Emeric Deutsch_, Jun 19 2005