This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109133 #16 Dec 20 2021 19:00:45 %S A109133 1,2,4,6,10,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33,35,36,38, %T A109133 41,42,44,45,47,50,51,53,54,56,59,60,62,63,65,68,69,71,72,74,77,78,80, %U A109133 81,83,86,87,90,92,95,96,99,101,103,105,109,110,112,114,118,121,123,127 %N A109133 Numbers k such that (sum of digits)*(number of digits) + 1 is prime. %C A109133 By Dirichlet's theorem on primes in arithmetic progressions, for any positive integer k this sequence has infinitely many terms of the form k*10^m. - _Robert Israel_, Dec 19 2021 %H A109133 Robert Israel, <a href="/A109133/b109133.txt">Table of n, a(n) for n = 1..10000</a> %e A109133 1234 is a term because 4*(1+2+3+4)+1 = 41. %p A109133 filter:= proc(n) local L; %p A109133 L:= convert(n,base,10); %p A109133 isprime(convert(L,`+`)*nops(L)+1) %p A109133 end proc: %p A109133 select(filter, [$1..200]); # _Robert Israel_, Dec 19 2021 %t A109133 Select[Range[130],PrimeQ[Total[IntegerDigits[#]]IntegerLength[ #]+ 1]&] (* _Harvey P. Dale_, Jul 12 2011 *) %o A109133 (Python) %o A109133 from sympy import isprime %o A109133 def ok(n): s = str(n); return isprime(sum(map(int, s))*len(s) + 1) %o A109133 print([k for k in range(128) if ok(k)]) # _Michael S. Branicky_, Dec 19 2021 %Y A109133 Cf. A110805. %K A109133 base,easy,nonn %O A109133 1,2 %A A109133 _Jason Earls_, Aug 17 2005