A109158 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and having height of last peak equal to k.
1, 1, 2, 4, 3, 1, 10, 20, 18, 12, 5, 1, 66, 132, 122, 92, 54, 24, 7, 1, 498, 996, 930, 732, 478, 264, 118, 40, 9, 1, 4066, 8132, 7634, 6140, 4214, 2552, 1342, 600, 218, 60, 11, 1, 34970, 69940, 65874, 53676, 37910, 24136, 13782, 7016, 3122, 1180, 362, 84, 13, 1
Offset: 1
Examples
T(2,3)=3 because we have uUddd, UdUddd and Uuddd. Triangle begins: 1,1; 2,4,3,1; 10,20,18,12,5,1; 66,132,122,92,54,24,7,1;
Links
- Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
Crossrefs
Cf. A027307.
Programs
-
Maple
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=t*z*(1+t)/(1-t*z-t^2*z-(1+t)*z*A-z*A^2): Gser:=simplify(series(G,z=0,10)): for n from 1 to 8 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 8 do seq(coeff(P[n],t^k),k=1..2*n) od; # yields sequence in triangular form
Formula
G.f.=tz(1+t)/[1-tz-t^2z-(1+t)zA-zA^2], where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
Comments