cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109188 Number of (1,0) steps in all Grand Motzkin paths of length n.

This page as a plain text file.
%I A109188 #31 Nov 09 2021 13:12:54
%S A109188 1,2,9,28,95,306,987,3144,9963,31390,98483,307836,959257,2981174,
%T A109188 9243405,28601712,88342659,272428758,838903371,2579937060,7924966749,
%U A109188 24317716038,74546117121,228317474952,698708409525,2136597743826
%N A109188 Number of (1,0) steps in all Grand Motzkin paths of length n.
%C A109188 A Grand Motzkin path is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).
%H A109188 G. C. Greubel, <a href="/A109188/b109188.txt">Table of n, a(n) for n = 1..1000</a>
%F A109188 G.f.: x*(1 - x)/(1 - 2*x - 3*x^2)^(3/2).
%F A109188 a(n) = n*A002426(n-1). - _Paul Barry_, Apr 19 2008, corrected Nov 09 2021
%F A109188 E.g.f.: a(n) = n! * [x^n] exp(x)*((1 + x)*BesselI(0, 2*x) + 2*x*BesselI(1, 2*x)). - _Peter Luschny_, Aug 25 2012
%F A109188 D-finite with recurrence (-n+1)*a(n) + (3*n-4)*a(n-1) + (n+5)*a(n-2) + 3*(-n+2)*a(n-3) = 0. - _R. J. Mathar_, Nov 26 2012
%F A109188 a(n) = n*hypergeom([1-n/2, 1/2-n/2], [1], 4) . - _Peter Luschny_, Sep 18 2014
%F A109188 a(n) ~ 3^(n-1/2)*sqrt(n)/(2*sqrt(Pi)). - _Vaclav Kotesovec_, Sep 18 2014
%e A109188 a(3)=9 because we have the following 7 (=A002426(3)) Grand Motzkin paths of length 3: hhh, hud, hdu, udh, duh, uhd and dhu; they have a total of 9 h-steps.
%p A109188 g:=z*(1-z)/(1-2*z-3*z^2)^(3/2): gser:=series(g,z=0,33): seq(coeff(gser,z^n),n=1..30);
%p A109188 a := n -> n*hypergeom([1-n/2, 1/2-n/2], [1], 4):
%p A109188 seq(simplify(a(n)), n=1..26); # _Peter Luschny_, Sep 18 2014
%t A109188 Rest[CoefficientList[Series[x*(1-x)/(1-2*x-3*x^2)^(3/2), {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Sep 18 2014 *)
%o A109188 (PARI) Vec(z*(1-z)/(1-2*z-3*z^2)^(3/2) + O(z^50)) \\ _G. C. Greubel_, Jan 31 2017
%Y A109188 Cf. A109187, A002426.
%K A109188 nonn
%O A109188 1,2
%A A109188 _Emeric Deutsch_, Jun 21 2005