A109190 Number of (1,0)-steps at level zero in all Grand Motzkin paths of length n.
1, 0, 2, 2, 8, 16, 46, 114, 310, 822, 2238, 6094, 16764, 46308, 128650, 358862, 1005056, 2824416, 7962122, 22508350, 63792424, 181219680, 515905018, 1471593638, 4205280902, 12037415526, 34510499066, 99083855234, 284870069780
Offset: 0
Keywords
Examples
a(3) = 2 because we have uhd and dhu.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Paul Barry, Moment sequences, transformations, and Spidernet graphs, arXiv:2307.00098 [math.CO], 2023.
- Taras Goy and Mark Shattuck, Determinants of Some Hessenberg-Toeplitz Matrices with Motzkin Number Entries, J. Int. Seq., Vol. 26 (2023), Article 23.3.4.
Programs
-
Maple
g:=(sqrt(1-2*z-3*z^2)-z)/(1-2*z-4*z^2): gser:=series(g,z=0,33): 1,seq(coeff(gser,z^n),n=1..30);
-
Mathematica
CoefficientList[Series[(Sqrt[1-2*x-3*x^2]-x)/(1-2*x-4*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)
-
PARI
x='x+O('x^55); Vec((sqrt(1-2*x-3*x^2)-x)/(1-2*x-4*x^2)) \\ Altug Alkan, Nov 11 2015
Formula
G.f.: (sqrt(1-2*z-3*z^2)-z)/(1-2*z-4*z^2).
G.f.: 1/(1-2x^2*M(x)), M(x) the g.f. of the Motzkin numbers A001006. - Paul Barry, Mar 02 2010
D-finite with recurrence n*a(n) +(3-4*n)*a(n-1) +3*(1-n)*a(n-2) +2*(7*n-15)*a(n-3) +12*(n-3)*a(n-4) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ 3^(n+3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 03 2014
Comments