cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109190 Number of (1,0)-steps at level zero in all Grand Motzkin paths of length n.

Original entry on oeis.org

1, 0, 2, 2, 8, 16, 46, 114, 310, 822, 2238, 6094, 16764, 46308, 128650, 358862, 1005056, 2824416, 7962122, 22508350, 63792424, 181219680, 515905018, 1471593638, 4205280902, 12037415526, 34510499066, 99083855234, 284870069780
Offset: 0

Views

Author

Emeric Deutsch, Jun 21 2005

Keywords

Comments

A Grand Motzkin path of length n is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) with steps u=(1,1), d=(1,-1) and h=(1,0).
Column 0 of A109189.
The substitution x->x/(1+x+x^2) in the g.f. (this might be called an inverse Motzkin transform), yields the g.f. of (-1)^n*A006355(n). - R. J. Mathar, Nov 10 2008
Apparently also the number of grand Motzkin paths of length n that avoid flat steps at level 0. - David Scambler, Jul 04 2013
Motzkin contexts such that along the path from the root to the hole there are only binary nodes. - Pierre Lescanne, Nov 11 2015

Examples

			a(3) = 2 because we have uhd and dhu.
		

Crossrefs

Programs

  • Maple
    g:=(sqrt(1-2*z-3*z^2)-z)/(1-2*z-4*z^2): gser:=series(g,z=0,33): 1,seq(coeff(gser,z^n),n=1..30);
  • Mathematica
    CoefficientList[Series[(Sqrt[1-2*x-3*x^2]-x)/(1-2*x-4*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)
  • PARI
    x='x+O('x^55); Vec((sqrt(1-2*x-3*x^2)-x)/(1-2*x-4*x^2)) \\ Altug Alkan, Nov 11 2015

Formula

G.f.: (sqrt(1-2*z-3*z^2)-z)/(1-2*z-4*z^2).
G.f.: 1/(1-2x^2*M(x)), M(x) the g.f. of the Motzkin numbers A001006. - Paul Barry, Mar 02 2010
D-finite with recurrence n*a(n) +(3-4*n)*a(n-1) +3*(1-n)*a(n-2) +2*(7*n-15)*a(n-3) +12*(n-3)*a(n-4) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ 3^(n+3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 03 2014