A109191 Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k hills (i.e., ud's starting at level 0). (A Grand Motzkin path is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).).
1, 1, 2, 1, 5, 2, 13, 5, 1, 34, 14, 3, 91, 40, 9, 1, 247, 114, 28, 4, 678, 327, 87, 14, 1, 1877, 942, 267, 48, 5, 5233, 2723, 815, 161, 20, 1, 14674, 7892, 2478, 528, 75, 6, 41349, 22924, 7512, 1706, 270, 27, 1, 117001, 66712, 22718, 5452, 941, 110, 7, 332260
Offset: 0
Examples
T(3,1)=2 because we have hud and udh, where u=(1,1),d=(1,-1), h=(1,0). Triangle begins: 1; 1; 2, 1; 5, 2; 13, 5, 1; 34, 14, 3; 91, 40, 9, 1;
Programs
-
Maple
M:=(1-z-sqrt(1-2*z-3*z^2))/2/z^2: G:=1/(1-z+z^2-t*z^2-2*z^2*M): Gser:=simplify(series(G,z=0,16)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 14 do seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)) od;
Formula
G.f.: 1/(1 - z + z^2 - tz^2 - 2z^2*M), where M = 1 + zM + z^2*M^2 = (1 - z - sqrt(1 - 2z - 3z^2))/(2z^2) is the g.f. of the Motzkin numbers (A001006).
Comments