cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109192 Number of Grand Motzkin paths of length n and having no hills (i.e., no ud's starting at level 0). (A Grand Motzkin path of length n is a path in the half-plane x >= 0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).)

Original entry on oeis.org

1, 1, 2, 5, 13, 34, 91, 247, 678, 1877, 5233, 14674, 41349, 117001, 332260, 946527, 2703915, 7743268, 22223607, 63909987, 184121946, 531318553, 1535522513, 4443815554, 12876794147, 37356832679, 108494114718, 315415738025
Offset: 0

Views

Author

Emeric Deutsch, Jun 21 2005

Keywords

Comments

Column 0 of A109191.

Examples

			a(3)=5 because we have hhh,hdu,duh,uhd and dhu.
		

Crossrefs

Cf. A109191.

Programs

  • Maple
    g:=1/(z^2+sqrt(1-2*z-3*z^2)): gser:=series(g,z=0,33): 1,seq(coeff(gser,z^n),n=1..31);
  • Mathematica
    CoefficientList[Series[1/(z^2+Sqrt[1-2z-3z^2]), {z, 0, 30}],z] (* Benedict W. J. Irwin, Nov 02 2016 *)

Formula

G.f.: 1/(z^2 + sqrt(1 - 2*z - 3*z^2)).
D-finite with recurrence -9*(2 + n)*(3 + n)*a(n) + (-198 - 111*n - 15*n^2)*a(n+1) + (-78 - 102*n - 24*n^2)*a(n+2) + (-462 - 340*n - 56*n^2)*a(n+3) + (-186 - 106*n - 14*n^2)*a(n+4) + (1086 + 426*n + 42*n^2)*a(n+5) + (108 + 49*n + 5*n^2)*a(n+6) + (-432 - 139*n - 11*n^2)*a(n+7) + 2*(6 + n)*(8 + n)*a(n+8) = 0. - Benedict W. J. Irwin, Nov 02 2016