This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109194 #24 Sep 03 2024 01:56:37 %S A109194 2,6,22,70,224,700,2174,6702,20572,62920,191932,584220,1775258, %T A109194 5386846,16326734,49435150,149557436,452133880,1366012832,4124825872, %U A109194 12449394278,37558361290,113266431860,341467468420,1029119688014 %N A109194 Number of returns to the x-axis (i.e., d or u steps hitting the x-axis) in all Grand Motzkin paths of length n. (A Grand Motzkin path of length n is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).). %H A109194 G. C. Greubel, <a href="/A109194/b109194.txt">Table of n, a(n) for n = 2..1000</a> %F A109194 a(n) = Sum_{k=0..floor(n/2)} k*A109193(n,k). %F A109194 a(n) = 2*A109196(n). %F A109194 G.f.: (1-z-sqrt(1-2*z-3*z^2))/(1-2*z-3*z^2). %F A109194 a(n) = 2*Sum_{k=1..n} Sum_{j=0..n} binomial(j,-n-2*k+2*j)*binomial(n,j), n>1. - _Vladimir Kruchinin_, Oct 12 2011 %F A109194 a(n) ~ 3^n/2 * (1-sqrt(3/(Pi*n))). - _Vaclav Kotesovec_, Nov 05 2016 %F A109194 D-finite with recurrence n*a(n) +(-4*n+3)*a(n-1) +(-2*n+3)*a(n-2) +3*(4*n-9)*a(n-3) +9*(n-3)*a(n-4)=0. - _R. J. Mathar_, Jul 26 2022 %e A109194 a(3)=6 because we have the following 7 (=A002426(3)) Grand Motzkin paths of length 3: hhh, hu(d), hd(u), u(d)h, d(u)h, uh(d) and dh(u); they have a total of 6 returns to the x-axis (shown between parentheses). %p A109194 g:=(1-z-sqrt(1-2*z-3*z^2))/(1-2*z-3*z^2): gser:=series(g,z=0,30): seq(coeff(gser,z^n),n=2..28); %t A109194 Drop[CoefficientList[Series[(1-x-Sqrt[1-2*x-3*x^2])/(1-2*x-3*x^2), {x, 0, 30}], x], 2] (* _Vaclav Kotesovec_, Nov 05 2016 *) %o A109194 (PARI) x='x+O('x^50); Vec((1-x-sqrt(1-2*x-3*x^2))/(1-2*x-3*x^2)) \\ _G. C. Greubel_, Mar 02 2017 %Y A109194 Cf. A109193, A109196. %K A109194 nonn %O A109194 2,1 %A A109194 _Emeric Deutsch_, Jun 22 2005