This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109299 #14 Aug 14 2025 04:08:23 %S A109299 1,2,12,18,360,540,600,1350,1500,2250,75600,105840,113400,126000, %T A109299 158760,246960,283500,294000,315000,411600,472500,555660,735000, %U A109299 864360,992250,1296540,1389150,1440600,1653750,2572500,3241350,3601500,3858750 %N A109299 Primal codes of canonical finite permutations on positive integers. %C A109299 A canonical finite permutation on positive integers is a bijective mapping of [n] = {1, ..., n} to itself, counting the empty mapping as a permutation of the empty set. %C A109299 From _Rémy Sigrist_, Sep 18 2021: (Start) %C A109299 As usual with lists, the terms of the sequence are given in ascending order. %C A109299 Equivalently, these are the numbers m such that A001221(m) = A051903(m) = A061395(m) = A071625(m). %C A109299 This sequence has connections with A175061; here the prime factorizations, there the run-lengths in binary expansions, encode finite permutations. %C A109299 There are m! terms with m distinct prime factors, the least one being A006939(m) and the greatest one being A076954(m); these m! terms are not necessarily contiguous. (End) %D A109299 Suggested by Franklin T. Adams-Watters %H A109299 J. Awbrey, <a href="https://oeis.org/wiki/Riffs_and_Rotes">Riffs and Rotes</a> %H A109299 Rémy Sigrist, <a href="/A109299/a109299.gp.txt">PARI program for A109299</a> %e A109299 Writing (prime(i))^j as i:j, we have this table: %e A109299 Primal Codes of Canonical Finite Permutations %e A109299 1 = { } %e A109299 2 = 1:1 %e A109299 12 = 1:2 2:1 %e A109299 18 = 1:1 2:2 %e A109299 360 = 1:3 2:2 3:1 %e A109299 540 = 1:2 2:3 3:1 %e A109299 600 = 1:3 2:1 3:2 %e A109299 1350 = 1:1 2:3 3:2 %e A109299 1500 = 1:2 2:1 3:3 %e A109299 2250 = 1:1 2:2 3:3 %e A109299 75600 = 1:4 2:3 3:2 4:1 %e A109299 105840 = 1:4 2:3 3:1 4:2 %e A109299 113400 = 1:3 2:4 3:2 4:1 %e A109299 126000 = 1:4 2:2 3:3 4:1 %e A109299 158760 = 1:3 2:4 3:1 4:2 %e A109299 246960 = 1:4 2:2 3:1 4:3 %e A109299 283500 = 1:2 2:4 3:3 4:1 %e A109299 294000 = 1:4 2:1 3:3 4:2 %e A109299 315000 = 1:3 2:2 3:4 4:1 %e A109299 411600 = 1:4 2:1 3:2 4:3 %e A109299 472500 = 1:2 2:3 3:4 4:1 %e A109299 555660 = 1:2 2:4 3:1 4:3 %e A109299 735000 = 1:3 2:1 3:4 4:2 %e A109299 864360 = 1:3 2:2 3:1 4:4 %e A109299 992250 = 1:1 2:4 3:3 4:2 %e A109299 1296540 = 1:2 2:3 3:1 4:4 %e A109299 1389150 = 1:1 2:4 3:2 4:3 %e A109299 1440600 = 1:3 2:1 3:2 4:4 %e A109299 1653750 = 1:1 2:3 3:4 4:2 %e A109299 2572500 = 1:2 2:1 3:4 4:3 %e A109299 3241350 = 1:1 2:3 3:2 4:4 %e A109299 3601500 = 1:2 2:1 3:3 4:4 %e A109299 3858750 = 1:1 2:2 3:4 4:3 %e A109299 5402250 = 1:1 2:2 3:3 4:4 %o A109299 (PARI) \\ See Links section. %o A109299 (PARI) is(n) = { my (f=factor(n), p=f[,1]~, e=f[,2]~); Set(e)==[1..#e] && (#p==0 || p[#p]==prime(#p)) } \\ _Rémy Sigrist_, Sep 18 2021 %Y A109299 Cf. A001221, A006939, A051903, A061395, A071625, A076954, A106177, A108352, A108371, A109297, A109298, A109301, A175061, A347758. %K A109299 nonn %O A109299 1,2 %A A109299 _Jon Awbrey_, Jul 09 2005 %E A109299 Offset changed to 1 and data corrected by _Rémy Sigrist_, Sep 18 2021