This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109301 #16 Nov 23 2013 19:41:05 %S A109301 0,1,2,2,3,2,3,3,2,3,4,2,3,3,3,3,4,2,4,3,3,4,3,3,3,3,3,3,4,3,5,4,4,4, %T A109301 3,2,3,4,3,3,4,3,4,4,3,3,4,3,3,3,4,3,4,3,4,3,4,4,5,3,3,5,3,3,3,4,5,4, %U A109301 3,3,4,3,4,3,3,4,4,3,5,3,3,4,4,3,4,4,4,4,4,3,3,3,5,4,4,4,4,3,4,3 %N A109301 a(n) = rhig(n) = rote height in gammas of n, where the "rote" corresponding to a positive integer n is a graph derived from the primes factorization of n, as illustrated in the comments. %C A109301 Table of Rotes and Primal Functions for Positive Integers from 1 to 40 %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` o-o ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` | ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` o-o ` ` ` ` ` o-o ` ` ` ` ` o-o ` ` ` ` ` o-o ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` ` %C A109301 O ` ` ` ` ` ` O ` ` ` ` ` ` O ` ` ` ` ` ` O ` ` ` ` ` ` O ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 { } ` ` ` ` ` 1:1 ` ` ` ` ` 2:1 ` ` ` ` ` 1:2 ` ` ` ` ` 3:1 ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 1 ` ` ` ` ` ` 2 ` ` ` ` ` ` 3 ` ` ` ` ` ` 4 ` ` ` ` ` ` 5 ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` o-o ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` %C A109301 ` ` o-o ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` o-o o-o ` ` ` ` ` o-o ` ` ` ` %C A109301 ` ` | ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` | ` | ` ` ` ` ` ` | ` ` ` ` ` %C A109301 o-o o-o ` ` ` o-o ` ` ` ` ` o-o ` ` ` ` ` o---o ` ` ` ` o-o o-o ` ` ` ` %C A109301 | ` | ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` | ` | ` ` ` ` ` %C A109301 O===O ` ` ` ` O ` ` ` ` ` ` O ` ` ` ` ` ` O ` ` ` ` ` ` O===O ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 1:1 2:1 ` ` ` 4:1 ` ` ` ` ` 1:3 ` ` ` ` ` 2:2 ` ` ` ` ` 1:1 3:1 ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 6 ` ` ` ` ` ` 7 ` ` ` ` ` ` 8 ` ` ` ` ` ` 9 ` ` ` ` ` ` 10` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 o-o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 o-o ` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` o-o ` ` ` ` %C A109301 | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` | ` ` ` ` ` %C A109301 o-o ` ` ` ` ` ` o-o o-o ` ` o-o o-o ` ` ` ` ` o-o ` ` ` o-o o-o ` ` ` ` %C A109301 | ` ` ` ` ` ` ` | ` | ` ` ` | ` | ` ` ` ` ` ` | ` ` ` ` | ` | ` ` ` ` ` %C A109301 o-o ` ` ` ` ` o-o ` o-o ` ` o===o-o ` ` ` o-o o-o ` ` ` o-o o-o ` ` ` ` %C A109301 | ` ` ` ` ` ` | ` ` | ` ` ` | ` ` ` ` ` ` | ` | ` ` ` ` | ` | ` ` ` ` ` %C A109301 O ` ` ` ` ` ` O=====O ` ` ` O ` ` ` ` ` ` O===O ` ` ` ` O===O ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 5:1 ` ` ` ` ` 1:2 2:1 ` ` ` 6:1 ` ` ` ` ` 1:1 4:1 ` ` ` 2:1 3:1 ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 11` ` ` ` ` ` 12` ` ` ` ` ` 13` ` ` ` ` ` 14` ` ` ` ` ` 15` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` o-o ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` o-o ` ` ` %C A109301 ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` ` %C A109301 ` o-o ` ` ` ` o-o ` ` ` ` ` ` ` o-o o-o ` o-o ` ` ` ` ` ` o-o o-o ` ` ` %C A109301 ` | ` ` ` ` ` | ` ` ` ` ` ` ` ` | ` | ` ` | ` ` ` ` ` ` ` | ` | ` ` ` ` %C A109301 o-o ` ` ` ` ` o-o ` ` ` ` ` o-o o---o ` ` o-o ` ` ` ` ` o-o ` o-o ` ` ` %C A109301 | ` ` ` ` ` ` | ` ` ` ` ` ` | ` | ` ` ` ` | ` ` ` ` ` ` | ` ` | ` ` ` ` %C A109301 O ` ` ` ` ` ` O ` ` ` ` ` ` O===O ` ` ` ` O ` ` ` ` ` ` O=====O ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 1:4 ` ` ` ` ` 7:1 ` ` ` ` ` 1:1 2:2 ` ` ` 8:1 ` ` ` ` ` 1:2 3:1 ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 16` ` ` ` ` ` 17` ` ` ` ` ` 18` ` ` ` ` ` 19` ` ` ` ` ` 20` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` o-o ` ` ` ` o-o ` ` ` o-o o-o ` ` ` ` o-o ` ` ` ` o-o ` ` ` ` ` ` %C A109301 ` ` ` | ` ` ` ` ` | ` ` ` ` | ` | ` ` ` ` ` | ` ` ` ` ` | ` ` ` ` ` ` ` %C A109301 o-o o-o ` ` ` ` ` o-o ` ` ` o---o ` ` ` ` ` o-o o-o ` ` o-o o-o ` ` ` ` %C A109301 | ` | ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` | ` | ` ` ` | ` | ` ` ` ` ` %C A109301 o-o o-o ` ` ` o-o o-o ` ` ` o-o ` ` ` ` ` o-o ` o-o ` ` o---o ` ` ` ` ` %C A109301 | ` | ` ` ` ` | ` | ` ` ` ` | ` ` ` ` ` ` | ` ` | ` ` ` | ` ` ` ` ` ` ` %C A109301 O===O ` ` ` ` O===O ` ` ` ` O ` ` ` ` ` ` O=====O ` ` ` O ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 2:1 4:1 ` ` ` 1:1 5:1 ` ` ` 9:1 ` ` ` ` ` 1:3 2:1 ` ` ` 3:2 ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 21` ` ` ` ` ` 22` ` ` ` ` ` 23` ` ` ` ` ` 24` ` ` ` ` ` 25` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` o-o ` ` ` o-o ` ` ` ` ` ` ` o-o ` ` ` o-o ` ` ` ` ` ` ` o-o ` ` %C A109301 ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` %C A109301 ` ` o-o o-o ` o-o o-o ` ` ` ` o-o o-o ` ` o-o o-o ` ` ` ` ` o-o o-o ` ` %C A109301 ` ` | ` | ` ` | ` | ` ` ` ` ` | ` | ` ` ` | ` | ` ` ` ` ` ` | ` | ` ` ` %C A109301 o-o o===o-o ` o---o ` ` ` ` o-o ` o-o ` ` o===o-o ` ` ` o-o o-o o-o ` ` %C A109301 | ` | ` ` ` ` | ` ` ` ` ` ` | ` ` | ` ` ` | ` ` ` ` ` ` | ` | ` | ` ` ` %C A109301 O===O ` ` ` ` O ` ` ` ` ` ` O=====O ` ` ` O ` ` ` ` ` ` O===O===O ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 1:1 6:1 ` ` ` 2:3 ` ` ` ` ` 1:2 4:1 ` ` ` 10:1` ` ` ` ` 1:1 2:1 3:1 ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 26` ` ` ` ` ` 27` ` ` ` ` ` 28` ` ` ` ` ` 29` ` ` ` ` ` 30` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 o-o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 o-o ` ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` %C A109301 | ` ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` %C A109301 o-o ` ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` ` o-o ` ` ` o-o ` o-o ` ` ` %C A109301 | ` ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` | ` ` | ` ` ` ` %C A109301 o-o ` ` ` ` ` ` o-o ` ` ` ` o-o o-o ` ` ` ` ` o-o ` ` ` o-o o-o ` ` ` ` %C A109301 | ` ` ` ` ` ` ` | ` ` ` ` ` | ` | ` ` ` ` ` ` | ` ` ` ` | ` | ` ` ` ` ` %C A109301 o-o ` ` ` ` ` o-o ` ` ` ` ` o-o o-o ` ` ` o-o o-o ` ` ` o-o o-o ` ` ` ` %C A109301 | ` ` ` ` ` ` | ` ` ` ` ` ` | ` | ` ` ` ` | ` | ` ` ` ` | ` | ` ` ` ` ` %C A109301 O ` ` ` ` ` ` O ` ` ` ` ` ` O===O ` ` ` ` O===O ` ` ` ` O===O ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 11:1` ` ` ` ` 1:5 ` ` ` ` ` 2:1 5:1 ` ` ` 1:1 7:1 ` ` ` 3:1 4:1 ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 31` ` ` ` ` ` 32` ` ` ` ` ` 33` ` ` ` ` ` 34` ` ` ` ` ` 35` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` o-o o-o ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` o-o o-o ` ` ` %C A109301 ` ` ` ` ` ` ` ` | ` | ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` | ` | ` ` ` ` %C A109301 ` o-o o-o o-o o-o ` o-o ` ` ` ` o-o ` ` ` o-o o-o o-o ` ` o-o o-o ` ` ` %C A109301 ` | ` | ` | ` | ` ` | ` ` ` ` ` | ` ` ` ` | ` | ` | ` ` ` | ` | ` ` ` ` %C A109301 o-o ` o---o ` o=====o-o ` ` o-o o-o ` ` ` o-o o===o-o ` o-o ` o-o ` ` ` %C A109301 | ` ` | ` ` ` | ` ` ` ` ` ` | ` | ` ` ` ` | ` | ` ` ` ` | ` ` | ` ` ` ` %C A109301 O=====O ` ` ` O ` ` ` ` ` ` O===O ` ` ` ` O===O ` ` ` ` O=====O ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 1:2 2:2 ` ` ` 12:1` ` ` ` ` 1:1 8:1 ` ` ` 2:1 6:1 ` ` ` 1:3 3:1 ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 36` ` ` ` ` ` 37` ` ` ` ` ` 38` ` ` ` ` ` 39` ` ` ` ` ` 40` ` ` ` ` ` ` %C A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %C A109301 In these Figures, "extended lines of identity" like o===o indicate identified nodes and capital O is the root node. The rote height in gammas is found by finding the number of graphs of the following shape between the root and one of the highest nodes of the tree: %C A109301 o--o %C A109301 | %C A109301 o %C A109301 A sequence like this, which can be regarded as a nonnegative integer measure on positive integers, may have as many as 3 other sequences associated with it. Given that the fiber of a function f at n is all the domain elements that map to n, we always have the fiber minimum or minimum inverse function and may also have the fiber cardinality and the fiber maximum or maximum inverse function. For A109301, the minimum inverse is A007097(n) = min {k : A109301(k) = n}, giving the first positive integer whose rote height is n; the fiber cardinality is A109300, giving the number of positive integers of rote height n; the maximum inverse, g(n) = max {k : A109301(k) = n}, giving the last positive integer whose rote height is n, has the following initial terms: g(0) = { } = 1, g(1) = 1:1 = 2, g(2) = 1:2 2:2 = 36, while g(3) = 1:36 2:36 3:36 4:36 6:36 9:36 12:36 18:36 36:36 = (2 3 5 7 13 23 37 61 151)^36 = 21399271530^36 = roughly 7.840858554516122655953405327738 x 10^371. %H A109301 J. Awbrey, <a href="https://oeis.org/wiki/Riffs_and_Rotes">Riffs and Rotes</a> %F A109301 Writing (prime(i))^j as i:j, the prime factorization of a positive integer n can be written as n = prod_(k = 1 to m) i(k):j(k). This sets up the formula: rhig(n) = 1 + max_(k = 1 to m) {rhig(i(k)), rhig(j(k))}, where rhig(1) = 0. %e A109301 Writing (prime(i))^j as i:j, we have: %e A109301 802701 = 2:2 8638:1 %e A109301 8638 = 1:1 4:1 113:1 %e A109301 113 = 30:1 %e A109301 30 = 1:1 2:1 3:1 %e A109301 4 = 1:2 %e A109301 3 = 2:1 %e A109301 2 = 1:1 %e A109301 1 = { } %e A109301 So rote(802701) is the graph: %e A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %e A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` o-o %e A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` | ` %e A109301 ` ` ` ` ` ` ` ` ` ` ` o-o o-o %e A109301 ` ` ` ` ` ` ` ` ` ` ` | ` | ` %e A109301 ` ` ` ` ` ` ` o-o o-o o-o o-o %e A109301 ` ` ` ` ` ` ` | ` | ` | ` | ` %e A109301 ` ` ` ` ` ` o-o ` o===o===o-o %e A109301 ` ` ` ` ` ` | ` ` | ` ` ` ` ` %e A109301 o-o o-o o-o o-o ` o---------o %e A109301 | ` | ` | ` | ` ` | ` ` ` ` ` %e A109301 o---o ` o===o=====o---------o %e A109301 | ` ` ` | ` ` ` ` ` ` ` ` ` ` %e A109301 O=======O ` ` ` ` ` ` ` ` ` ` %e A109301 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` %e A109301 Therefore rhig(802701) = 6. %Y A109301 Cf. A007097, A050924, A061396, A062504, A062537, A062860. %Y A109301 Cf. A106177, A108352, A108371, A109300, A111791 to A111800. %K A109301 nonn %O A109301 1,3 %A A109301 _Jon Awbrey_, Jun 24 2005 - Jul 08 2005