This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109308 #17 Sep 08 2021 19:17:03 %S A109308 13,17,37,79,107,113,149,157,167,179,199,337,347,359,389,709,739,769, %T A109308 1009,1021,1031,1033,1061,1069,1091,1097,1103,1109,1151,1153,1181, %U A109308 1193,1213,1217,1223,1229,1231,1237,1249,1259,1279,1283,1381,1399,1409,1429 %N A109308 Lesser emirps (primes whose digit reversal is a larger prime). %H A109308 R. J. Mathar, <a href="/A109308/b109308.txt">Table of n, a(n) for n = 1..1000</a> %p A109308 read("transforms"): %p A109308 A109308 := proc(n) %p A109308 option remember; %p A109308 local p,R ; %p A109308 if n = 1 then %p A109308 return 13 ; %p A109308 else %p A109308 p := nextprime(procname(n-1)) ; %p A109308 while true do %p A109308 R := digrev(p) ; %p A109308 if R> p and isprime(R) then %p A109308 return p; %p A109308 end if; %p A109308 p := nextprime(p) ; %p A109308 end do: %p A109308 end if; %p A109308 end proc: # _R. J. Mathar_, Oct 12 2012 %t A109308 dr[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Select[Prime[Range[1000]], PrimeQ[dr[ # ]]&&dr[ # ]>#&] %o A109308 (PARI) isok(p) = if (isprime(p), my(q=fromdigits(Vecrev(digits(p)))); (p < q) && isprime(q)); \\ _Michel Marcus_, Sep 07 2021 %o A109308 (Python) %o A109308 from sympy import isprime, primerange %o A109308 def ok(p): revp = int(str(p)[::-1]); return p < revp and isprime(revp) %o A109308 print(list(filter(ok, primerange(1, 1430)))) # _Michael S. Branicky_, Sep 07 2021 %Y A109308 Cf. A006567 (emirps), A109309 (larger emirps). %K A109308 base,nonn %O A109308 1,1 %A A109308 _Zak Seidov_, Jun 25 2005