This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109314 #22 Jun 18 2017 02:38:34 %S A109314 3,5,8,9,12,86,230,503,1170,2660,2772,6288,6572,8858,9590,14870,16332, %T A109314 17708,53132,54540,63890,64908,82830,93068,98132,104726,119298,136502, %U A109314 152198,177918,187040,234650,241682,253118,263930,278970,376680,412440,456110,469034 %N A109314 Numbers n such that prime(n) + n is a prime power (A246547). %H A109314 Donovan Johnson, <a href="/A109314/b109314.txt">Table of n, a(n) for n = 1..1000</a> %F A109314 prime(n) + n = q^k, q is prime and k_Integer >= 2. %e A109314 2660 is OK because prime(2660) + 2660 = 23909 + 2660 = 26569 = 163^2, 163 is prime. %p A109314 ispp:= n -> not isprime(n) and nops(numtheory:-factorset(n))=1: %p A109314 p:= 1: Res:= NULL: %p A109314 for n from 1 to 10^6 do %p A109314 p:= nextprime(p); %p A109314 if ispp(n+p) then Res:= Res, n fi %p A109314 od: %p A109314 Res; # _Robert Israel_, Jun 08 2016 %t A109314 lst = {}; fQ[n_] := Block[{pf = FactorInteger[n]}, (2-Length[pf])(pf[[1, 2]]-1) > 0]; Do[ If[ fQ[Prime[n] + n], Print[n]; AppendTo[lst, n]], {n, 456109}]; lst %o A109314 (Sage) def np(n): return n+nth_prime(n) %o A109314 [n for n in (1..10000) if not np(n).is_prime() and np(n).is_prime_power()] # _Giuseppe Coppoletta_, Jun 08 2016 %o A109314 (PARI) isok(n) = isprimepower(n+prime(n)) >= 2; \\ _Michel Marcus_, Jun 18 2017 %Y A109314 Cf. A025475 = powers of a prime but not prime, also nonprime n such that sigma(n)*phi(n) > (n-1)2; A107708 = values of q, A107709 = values of k; A107710 = values of prime (A109314(n)). %Y A109314 Cf. A107605, A246547. %K A109314 nonn %O A109314 1,1 %A A109314 _Zak Seidov_ and _Robert G. Wilson v_, Jun 25 2005