cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109326 Smallest positive number that requires n steps to be represented as a sum of palindromes using the greedy algorithm.

Original entry on oeis.org

1, 10, 21, 1022, 101023, 1000101024
Offset: 1

Views

Author

David Wasserman, Aug 11 2005

Keywords

Comments

Index of first occurrence of n in A088601.
Presumably this sequence is unbounded. - N. J. A. Sloane, Aug 28 2015
The greedy algorithm means iteration of A261424 until a palindrome is reached. For n = 3, 4, ... we have a(n+1) = 10^L(n) + a(n) + 1 with L(n) = 2^(n-2) + 1 = length(a(n))*2 - 3 for n > 3. We have a(7) <= 10^17 + 1000101025, a(8) <= 10^33 + 10^17 + 1000101026, a(9) <= 10^65 + 10^33 + 10^17 + 1000101027, a(10) <= 10^129 + 10^65 + 10^33 + 10^17 + 1000101028, etc, with conjectured equality. - M. F. Hasler, Sep 08 2015, edited Sep 09 2018

Crossrefs

Programs

  • Python
    # uses functions in A088601
    def afind(limit):
        record = 0
        for i in range(1, limit+1):
            steps = A088601(i)
            if steps > record: print(i, end=", "); record = steps
    afind(10**6) # Michael S. Branicky, Jul 12 2021

Formula

a(n) = Sum_{0 <= k <= n-3} 10^(2^k+1) + n - 82, for n > 2 (conjectured). - M. F. Hasler, Sep 08 2015

Extensions

Edited by N. J. A. Sloane, Aug 28 2015