cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109452 Maximum of min(primeimplicants(f),primeimplicants(NOT f)) over all symmetric Boolean functions of n variables.

Original entry on oeis.org

1, 1, 4, 5, 21, 31, 113, 177, 766, 1271, 4687, 7999, 34412, 60166, 225891, 401201, 1702653, 3064183, 11646431, 21171246, 88894429, 162966750, 624746839, 1153324813, 4805206256, 8923870307, 34421146489, 64252106507, 266183327326
Offset: 1

Views

Author

Don Knuth, Aug 27 2005

Keywords

Comments

Fridshal's example for n=9 was S_{2,3,4,8,9}(x_1,...,x_9); this has "only" 765 prime implicants.

Examples

			a(9)=766 because of the symmetric function S_{0,2,3,4,8}(x_1, ..., x_9).
		

References

  • R. Fridshal, Summaries, Summer Institute for Symbolic Logic, Department of Mathematics, Cornell University, 1957, 211-212.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.1.1 (in preparation).

Crossrefs

Programs

  • Maple
    aux := proc(m,n) option remember ; if m < 0 then 0 ; else combinat[multinomial](n,ceil(m/2),floor(m/2),n-m)+binomial(n,ceil(m/2-1))+aux(ceil(m/2)-2,n) ; fi ; end: A109452 := proc(n) aux( ceil(n/2)-1,n) ; end: for n from 1 to 40 do printf("%d, ",A109452(n)) ; od ; # R. J. Mathar, May 08 2007
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    aux[m_, n_] := aux[m, n] = If [m<0, 0, multinomial[n, {Ceiling[m/2], Floor[m/2], n-m}]+Binomial[n, Ceiling[m/2-1]]+aux[Ceiling[m/2]-2, n]];
    a[n_] := aux[Ceiling[n/2]-1, n];
    Array[a, 40] (* Jean-François Alcover, Mar 24 2021, after R. J. Mathar *)

Formula

a(n) = aux(ceiling(n/2) - 1, n), where aux(m, n) = trinomial(n, ceiling(m/2), floor(m/2), n-m) + binomial(n, ceiling(m/2-1)) + aux(ceiling(m/2)-2, n).

Extensions

More terms from R. J. Mathar, May 08 2007