This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109494 #11 May 08 2022 05:24:31 %S A109494 1,2,1,2,2,1,1,2,1,1,5,5,1,2,5,2,1,1,1,2,1,2,8,8,1,1,8,15,8,1,2,8,8,2, %T A109494 1,2,1,1,2,1,3,11,11,3,3,18,31,18,3,1,11,31,31,11,1,2,11,18,11,2,1,3, %U A109494 3,1,1,2,1,4,14,14,4,6,32,53,32,6,4,32,80,80,32,4,1,14,53,80,53,14,1 %N A109494 Entries in 3-dimensional solid related to Prouhet-Tarry problem. %C A109494 Entries of slices [n,2] in A109672, read by rows. %C A109494 Slice [n,0] gives A046816, slice [0,k] gives A109649, slice [n,n] gives A109673, slice [n,1] gives A109390, slice [1,k] gives A109393, slice [2,k] gives A109495. %F A109494 Sum of terms in 2D slice [n, 2] is 3^(n+2). %e A109494 Slice [0,2]: %e A109494 ... 1 2 1 ... %e A109494 .... 2 2 .... %e A109494 ..... 1 ..... %e A109494 Slice [1,2]: %e A109494 ... 1 2 1 ... %e A109494 .. 1 5 5 1 ... %e A109494 ... 2 5 2 ... %e A109494 .... 1 1 .... %e A109494 Slice [2,2]: %e A109494 .... 1 2 1 .... %e A109494 ... 2 8 8 2 ... %e A109494 .. 1 8 15 8 1 ... %e A109494 ... 2 8 8 2 ... %e A109494 .... 1 2 1 .... %e A109494 Slice [3,2]: %e A109494 ..... 1 2 1 ..... %e A109494 .... 3 11 11 3 .... %e A109494 ... 3 18 31 18 3 ... %e A109494 .. 1 11 31 31 11 1 ... %e A109494 ... 2 11 18 11 2 ... %e A109494 .... 1 3 3 1 .... %e A109494 Slice [4,2]: %e A109494 ...... 1 2 1 ...... %e A109494 ..... 4 14 14 4 ..... %e A109494 .... 6 32 53 32 6 .... %e A109494 ... 4 32 80 80 32 4 ... %e A109494 .. 1 14 53 80 53 14 1 ... %e A109494 ... 2 14 32 32 14 2 ... %e A109494 .... 1 4 6 4 1 .... %e A109494 Slice [5,2]: %e A109494 ....... 1 2 1 ....... %e A109494 ...... 5 17 17 5 ...... %e A109494 ..... 10 50 81 50 10 ..... %e A109494 .... 10 70 165 165 70 10 .... %e A109494 ... 5 50 165 240 165 50 5 ... %e A109494 .. 1 17 81 165 165 81 17 1 ... %e A109494 ... 2 17 50 70 50 17 2 ... %e A109494 .... 1 5 10 10 5 1 .... %K A109494 nonn,tabf,easy %O A109494 0,2 %A A109494 _Philippe Deléham_, Aug 29 2005