This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109495 #11 Mar 27 2021 01:00:39 %S A109495 1,2,2,1,2,1,1,1,2,5,2,1,5,5,1,1,2,1,1,2,1,2,8,8,2,1,8,15,8,1,2,8,8,2, %T A109495 1,2,1,1,3,3,1,2,11,18,11,2,1,11,31,31,11,1,3,18,31,18,3,3,11,11,3,1, %U A109495 2,1,1,4,6,4,1,2,14,32,32,14,2,1,14,53,80,53,14,1,4,32,80,80,32,4,6 %N A109495 Entries in 3-dimensional solid related to Prouhet-Tarry problem. %C A109495 Entries of slices [2,k] in A109672, read by rows. %C A109495 Slice [n,0] gives A046816, slice [0,k] gives A109649, slice [n,n] gives A109673, slice [n,1] gives A109390, slice [1,k] gives A109393. %F A109495 Sum of terms in 2D slice [2, k] is 3^(2+k). %e A109495 Slice [2,0]: %e A109495 .... 1 .... %e A109495 ... 2 2 ... %e A109495 .. 1 2 1 ... %e A109495 Slice [2,1]: %e A109495 .... 1 1 .... %e A109495 ... 2 5 2 ... %e A109495 .. 1 5 5 1 ... %e A109495 ... 1 2 1 ... %e A109495 Slice [2,2]: %e A109495 .... 1 2 1 .... %e A109495 ... 2 8 8 2 ... %e A109495 .. 1 8 15 8 1 ... %e A109495 ... 2 8 8 2 ... %e A109495 .... 1 2 1 .... %e A109495 Slice [2,3]: %e A109495 .... 1 3 3 1 .... %e A109495 ... 2 11 18 11 2 ... %e A109495 .. 1 11 31 31 11 1 ... %e A109495 ... 3 18 31 18 3 .... %e A109495 .... 3 11 11 3 ..... %e A109495 ..... 1 2 1 ...... %e A109495 Slice [2,4]: %e A109495 .... 1 4 6 4 1 ... %e A109495 ... 2 14 32 32 14 2 ... %e A109495 .. 1 14 53 80 53 14 1 ... %e A109495 ... 4 32 80 80 32 4 .... %e A109495 .... 6 32 53 32 6 ..... %e A109495 ..... 4 14 14 4 .....; %e A109495 ...... 1 2 1 ......; %e A109495 Slice [2,5]: %e A109495 .... 1 5 10 10 5 1 ... %e A109495 ... 2 17 50 70 50 17 2 ... %e A109495 .. 1 17 81 165 165 81 17 1 ... %e A109495 ... 5 50 165 240 165 50 5 .... %e A109495 .... 10 70 165 165 70 10 ..... %e A109495 ..... 10 50 81 50 10 ...... %e A109495 ...... 5 17 17 5 ...... %e A109495 ....... 1 2 1 ....... %Y A109495 Cf. A109672, A046816, A109649, A109673, A109390, A109393. %K A109495 nonn,tabf,easy %O A109495 0,2 %A A109495 _Philippe Deléham_, Aug 29 2005