cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109502 Array read by antidiagonals: T(m,n) is the number of closed walks of length n on the complete graph on m nodes, m >= 1, n >= 0.

This page as a plain text file.
%I A109502 #24 May 31 2024 14:42:05
%S A109502 1,1,0,1,0,0,1,0,1,0,1,0,2,0,0,1,0,3,2,1,0,1,0,4,6,6,0,0,1,0,5,12,21,
%T A109502 10,1,0,1,0,6,20,52,60,22,0,0,1,0,7,30,105,204,183,42,1,0,1,0,8,42,
%U A109502 186,520,820,546,86,0,0,1,0,9,56,301,1110,2605,3276,1641,170,1,0
%N A109502 Array read by antidiagonals: T(m,n) is the number of closed walks of length n on the complete graph on m nodes, m >= 1, n >= 0.
%H A109502 M. Dukes and C. D. White, <a href="http://arxiv.org/abs/1603.01589">Web Matrices: Structural Properties and Generating Combinatorial Identities</a>, arXiv:1603.01589 [math.CO], 2016.
%F A109502 T(m,n) = ((m-1)^n + (m-1)(-1)^n)/m.
%F A109502 G.f.: T(m, n) = [z^n](1 - (m-2)z)/(1 - (m-2)z - (m-1)z^2).
%F A109502 From _Peter Bala_, May 29 2024: (Start)
%F A109502 Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = m^(n-1) for n >= 1.
%F A109502 Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A062160.
%F A109502 T(m_1*m_2, n) = Sum_{k = 0..n} Sum_{i = k..n} binomial(n, k)*binomial(n-k, i-k)*T(m_1, i)*T(m_2, n-k). (End)
%e A109502 Array begins:
%e A109502   m\n| 0  1  2  3   4    5     6      7       8        9        10
%e A109502   ---+------------------------------------------------------------
%e A109502    1 | 1  0  0  0   0    0     0      0       0        0         0
%e A109502    2 | 1  0  1  0   1    0     1      0       1        0         1
%e A109502    3 | 1  0  2  2   6   10    22     42      86      170       342
%e A109502    4 | 1  0  3  6  21   60   183    546    1641     4920     14763
%e A109502    5 | 1  0  4 12  52  204   820   3276   13108    52428    209716
%e A109502    6 | 1  0  5 20 105  520  2605  13020   65105   325520   1627605
%e A109502    7 | 1  0  6 30 186 1110  6666  39990  239946  1439670   8638026
%e A109502    8 | 1  0  7 42 301 2100 14707 102942  720601  5044200  35309407
%e A109502    9 | 1  0  8 56 456 3640 29128 233016 1864136 14913080 119304648
%e A109502   10 | 1  0  9 72 657 5904 53145 478296 4304673 38742048 348678441
%p A109502 T := proc(m, n); ((m-1)^n + (m-1)*(-1)^n)/m end:
%p A109502 seq(print(seq(T(m, n), n = 0..10)), m = 1..10); # _Peter Bala_, May 30 2024
%Y A109502 Rows are A078008, A054878, A109499, A109500, A109501.
%Y A109502 Cf. A062160.
%K A109502 nonn,easy,tabl
%O A109502 1,13
%A A109502 _Mitch Harris_, Jun 30 2005
%E A109502 Corrected by _Franklin T. Adams-Watters_, Sep 18 2006