cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109514 Let k be an integer consisting of m digits. Then k is a Pithy number if the k-th m-tuple in the decimal digits of Pi is k.

This page as a plain text file.
%I A109514 #23 Dec 18 2023 08:26:25
%S A109514 5,9696,19781,199898,687784863,4518673035,7526556436
%N A109514 Let k be an integer consisting of m digits. Then k is a Pithy number if the k-th m-tuple in the decimal digits of Pi is k.
%C A109514 A near-miss '02805451' occurs at position 2805451. - _Vaclav Kotesovec_, Feb 19 2020
%H A109514 David G. Andersen, <a href="http://www.angio.net/pi/piquery">The Pi-Search Page</a>.
%e A109514 5 is a term because the 5th single digit in Pi is 5.
%e A109514 9696 is a term because the 9696th quadruplet in Pi is 9696.
%t A109514 PithyNumbersWith3[m_] := Module[{cc = m(10^m)+m, sol, aa}, sol = Partition[RealDigits[Pi, 10, cc] // First, m]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i, Length[sol]}];]
%t A109514 (* Example: PithyNumbersWith3[5] produces all 5-digit Pithy numbers *)
%Y A109514 Cf. A109513, A057679, A057680.
%K A109514 base,more,nonn
%O A109514 1,1
%A A109514 _Colin Rose_, Jul 01 2005
%E A109514 a(5)-a(7) from _J. Volkmar Schmidt_, Dec 17 2023