This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109636 #34 Mar 31 2025 02:08:14 %S A109636 2,3,9,10,27,28,30,81,84,88,90,100,104,243,252,264,270,272,280,300, %T A109636 304,312,729,736,756,784,792,810,816,840,880,900,912,928,936,992,1000, %U A109636 1040,2187,2208,2268,2352,2368,2376,2430,2448,2464,2520,2624 %N A109636 Let T(n,k) be the n-th k-almost prime. Then a(n) = T(n,k) such that k is minimal and for all m>0, T(n,k+m) >= 2^m * T(n,k). %C A109636 If one writes the k-almost primes in rows (one row for each k), one observes that there exists a P_{k_0}(n) such that P_{k_0+1}(n) = 2P_{k_0}(n) and for each k>=k_0, P_{k+1}(n)=2P_{k}(n). Then a(n) = P_{k_0}(n). In other words in the columns the values double from row k_0 on. - Peter Pein (petsie(AT)dordos.net), Mar 16 2007 %H A109636 Chai Wah Wu, <a href="/A109636/b109636.txt">Table of n, a(n) for n = 1..10000</a> %H A109636 Wikipedia, <a href="http://en.wikipedia.org/wiki/Almost_prime">k-almost prime numbers</a>. %t A109636 a[n_] := Module[{p = Prime[Range[n]], pal}, pal = Transpose /@ Partition[NestList[Take[Union[Flatten[Outer[Times, #1, p]]], Length[#1]] &, p, n], 2, 1]; Complement @@ Transpose[Cases[pal, {k_, kk_} /; kk == 2*k, {2}]]] ; a[50] (* Peter Pein, Nov 10 2007 *) %o A109636 (Python) %o A109636 from itertools import count %o A109636 # uses function A078840_T from A078840 %o A109636 def A109636(n): %o A109636 a = A078840_T(1,n) %o A109636 for k in count(2): %o A109636 b = A078840_T(k,n) %o A109636 if b==(a<<1): %o A109636 return a %o A109636 a = b # _Chai Wah Wu_, Mar 30 2025 %Y A109636 Cf. A000040, A001358, A014612, A014613, A014614, A078840. %K A109636 nonn %O A109636 1,1 %A A109636 Yury V. Shlapak (shlapak(AT)imp.kiev.ua), Aug 04 2005 %E A109636 Edited by _Max Alekseyev_, Mar 16 2007 %E A109636 More terms from Peter Pein, Mar 16 2007 %E A109636 Definition corrected by _Chai Wah Wu_, Mar 30 2025