This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109653 #10 Nov 05 2024 10:30:54 %S A109653 2,5,12,23,36,53,72,101,132,169,210,253,300,359,420,487,558,631,710, %T A109653 793,882,979,1082,1189,1298,1411,1538,1669,1806,1945,2094,2245,2402, %U A109653 2565,2732,2905,3084,3265,3456,3649,3846,4045,4256,4479,4706,4935,5168,5407 %N A109653 Sequence and first differences include all prime numbers exactly once. %C A109653 Sequence and first differences: %C A109653 2 5 12 23 36 53 72 101 132 169 210 253 300 359 420... %C A109653 .3.7.11.13.17.19.29...31..37..41..43..47..59..61... %e A109653 All prime numbers appear once and only once, either in the sequence itself or in the first differences. %p A109653 A109653diff :=proc(n) %p A109653 option remember ; %p A109653 if n = 2 then %p A109653 3; %p A109653 else %p A109653 for pidx from 1 do %p A109653 fnd := false; %p A109653 p := ithprime(pidx) ; %p A109653 for i from 2 to n-1 do %p A109653 if procname(i) = p then %p A109653 fnd := true; %p A109653 end if; %p A109653 end do: %p A109653 for i from 2 to n do %p A109653 if A109653(i) = p then %p A109653 fnd := true; %p A109653 end if; %p A109653 end do: %p A109653 if not fnd then %p A109653 return p; %p A109653 end if; %p A109653 end do: %p A109653 end if; %p A109653 end proc: %p A109653 A109653 :=proc(n) %p A109653 if n = 2 then %p A109653 2 ; %p A109653 else %p A109653 procname(n-1)+A109653diff(n-1) ; %p A109653 end if; %p A109653 end proc: %p A109653 seq(A109653(n),n=2..80) ; # _R. J. Mathar_, Nov 05 2024 %t A109653 NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = {1}; d = 3; k = 2; Do[ While[ Position[a, d] != {}, d += 2 ]; k = k + d; d = NextPrim[d]; a = Append[a, k], {n, 47} ]; a (* _Robert G. Wilson v_ *) %Y A109653 Cf. A247657 %K A109653 base,easy,nonn %O A109653 2,1 %A A109653 _Eric Angelini_, Aug 30 2005 %E A109653 More terms from _Robert G. Wilson v_, Sep 28 2005