cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109672 Entries in 3-dimensional solids related to Prouhet-Tarry problem.

This page as a plain text file.
%I A109672 #8 Sep 08 2013 13:30:46
%S A109672 1,1,1,1,1,1,1,1,2,1,2,2,1,1,1,1,3,1,1,1,1,2,2,1,2,1,1,3,3,1,3,6,3,3,
%T A109672 3,1,1,2,1,1,5,5,1,2,5,2,1,1,1,1,2,5,2,1,5,5,1,1,2,1,1,3,3,3,6,3,1,3,
%U A109672 3,1,1,4,6,4,1,4,12,12,4,6,12,6,4,4,1,1,3,3,1,1,7,12,7,1,3,12
%N A109672 Entries in 3-dimensional solids related to Prouhet-Tarry problem.
%C A109672 Table of slices [n,k] of solids, read by antidiagonals, each slice [n,k] read by rows.
%C A109672 Slice [n,0] gives A046816.
%C A109672 Slice [0,k] gives A109649.
%C A109672 Slice [n,n] gives A109673.
%F A109672 Sum of terms in 2D slice [n, k] is 3^(n+k); example : 1+2+1+1+5+5+1+2+5+2+1+127=3^(2+1) for slice [1, 2].
%e A109672 Slice [0,0]:
%e A109672 ...1...
%e A109672 Slice [0,1]:
%e A109672 ... 1 1 ...
%e A109672 .... 1 ....
%e A109672 Slice [1,0]:
%e A109672 .... 1 ....
%e A109672 ... 1 1...
%e A109672 Slice [0,2]:
%e A109672 .. 1 2 1 ...
%e A109672 .... 2 2 ...
%e A109672 ..... 1 .....
%e A109672 Slice [1,1]:
%e A109672 ... 1 1 ...
%e A109672 .. 1 3 1..
%e A109672 ... 1 1 ...
%e A109672 Slice [2,0]:
%e A109672 ..... 1 .....
%e A109672 .... 2 2 ...
%e A109672 .. 1 2 1 ...
%e A109672 Slice [0,3]:
%e A109672 .. 1 3 3 1 ...
%e A109672 ... 3 6 3 ....
%e A109672 .... 3 3 ......
%e A109672 ..... 1 ........
%e A109672 Slice [1,2]:
%e A109672 ... 1 2 1 ...
%e A109672 .. 1 5 5 1 ...
%e A109672 ... 2 5 2 ...
%e A109672 .... 1 1 ...
%e A109672 Slice [2,1]:
%e A109672 .... 1 1 ...
%e A109672 ... 2 5 2 ...
%e A109672 .. 1 5 5 1 ...
%e A109672 ... 1 2 1 ...
%e A109672 Slice [3,0]:
%e A109672 ..... 1 .....
%e A109672 .... 3 3 ....
%e A109672 ... 3 6 3 ...
%e A109672 .. 1 3 3 1 ...
%K A109672 nonn,tabf,easy
%O A109672 0,9
%A A109672 _Philippe Deléham_, Aug 07 2005