This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109672 #8 Sep 08 2013 13:30:46 %S A109672 1,1,1,1,1,1,1,1,2,1,2,2,1,1,1,1,3,1,1,1,1,2,2,1,2,1,1,3,3,1,3,6,3,3, %T A109672 3,1,1,2,1,1,5,5,1,2,5,2,1,1,1,1,2,5,2,1,5,5,1,1,2,1,1,3,3,3,6,3,1,3, %U A109672 3,1,1,4,6,4,1,4,12,12,4,6,12,6,4,4,1,1,3,3,1,1,7,12,7,1,3,12 %N A109672 Entries in 3-dimensional solids related to Prouhet-Tarry problem. %C A109672 Table of slices [n,k] of solids, read by antidiagonals, each slice [n,k] read by rows. %C A109672 Slice [n,0] gives A046816. %C A109672 Slice [0,k] gives A109649. %C A109672 Slice [n,n] gives A109673. %F A109672 Sum of terms in 2D slice [n, k] is 3^(n+k); example : 1+2+1+1+5+5+1+2+5+2+1+127=3^(2+1) for slice [1, 2]. %e A109672 Slice [0,0]: %e A109672 ...1... %e A109672 Slice [0,1]: %e A109672 ... 1 1 ... %e A109672 .... 1 .... %e A109672 Slice [1,0]: %e A109672 .... 1 .... %e A109672 ... 1 1... %e A109672 Slice [0,2]: %e A109672 .. 1 2 1 ... %e A109672 .... 2 2 ... %e A109672 ..... 1 ..... %e A109672 Slice [1,1]: %e A109672 ... 1 1 ... %e A109672 .. 1 3 1.. %e A109672 ... 1 1 ... %e A109672 Slice [2,0]: %e A109672 ..... 1 ..... %e A109672 .... 2 2 ... %e A109672 .. 1 2 1 ... %e A109672 Slice [0,3]: %e A109672 .. 1 3 3 1 ... %e A109672 ... 3 6 3 .... %e A109672 .... 3 3 ...... %e A109672 ..... 1 ........ %e A109672 Slice [1,2]: %e A109672 ... 1 2 1 ... %e A109672 .. 1 5 5 1 ... %e A109672 ... 2 5 2 ... %e A109672 .... 1 1 ... %e A109672 Slice [2,1]: %e A109672 .... 1 1 ... %e A109672 ... 2 5 2 ... %e A109672 .. 1 5 5 1 ... %e A109672 ... 1 2 1 ... %e A109672 Slice [3,0]: %e A109672 ..... 1 ..... %e A109672 .... 3 3 .... %e A109672 ... 3 6 3 ... %e A109672 .. 1 3 3 1 ... %K A109672 nonn,tabf,easy %O A109672 0,9 %A A109672 _Philippe Deléham_, Aug 07 2005