This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109681 #28 Mar 14 2020 07:02:33 %S A109681 0,1,5,3,4,8,6,16,11,9,10,14,12,13,17,15,25,20,18,19,23,21,22,26,51, %T A109681 34,29,27,28,32,30,31,35,33,43,38,36,37,41,39,40,44,42,52,47,45,46,50, %U A109681 48,49,53,78,61,56,54,55,59,57,58,62,60,70,65,63,64,68,66 %N A109681 "Sloping ternary numbers": write numbers in ternary under each other (right-justified), read diagonals in upward direction, convert to decimal. %C A109681 All terms are distinct, but certain terms (see A109682) are missing. %C A109681 For the terms 3^k-1 (all 2's in ternary), the diagonal is not started at the leading 2, but at the leading 1 of the following term. - _Georg Fischer_, Mar 13 2020 %H A109681 Reinhard Zumkeller, <a href="/A109681/b109681.txt">Table of n, a(n) for n = 0..10000</a> %H A109681 Georg Fischer, <a href="/A109681/a109681.pl.txt">Perl program</a> %e A109681 number diagonal decimal %e A109681 0 0 0 %e A109681 1 1 1 %e A109681 2 12 5 %e A109681 10 10 3 %e A109681 11 11 4 %e A109681 12 22 8 %e A109681 20 20 6 %e A109681 21 121 16 %e A109681 22 102 11 %e A109681 100 100 9 %e A109681 101 101 10 %e A109681 102 112 14 %e A109681 110 110 12 %e A109681 11. ... ... %e A109681 1. %e A109681 . %p A109681 t:= (n, i)-> (d-> `if`(i=0, d, t(m, i-1)))(irem(n, 3, 'm')): %p A109681 b:= (n, i)-> `if`(3^i>n, 0, t(n,i) +3*b(n+1, i+1)): %p A109681 a:= n-> b(n, 0): %p A109681 seq(a(n), n=0..100); # _Alois P. Heinz_, Mar 13 2020 %o A109681 (Haskell) %o A109681 a109681 n = a109681_list !! n %o A109681 a109681_list = map (foldr (\d v -> 3 * v + d) 0) $ f a030341_tabf where %o A109681 f vss = (g 0 vss) : f (tail vss) %o A109681 g k (ws:wss) = if k < length ws then ws !! k : g (k + 1) wss else [] %o A109681 -- _Reinhard Zumkeller_, Nov 19 2013 %o A109681 (Perl) Cf. link. %Y A109681 Cf. A109682 (complement), A109683 (ternary version), A109684. %Y A109681 Cf. A102370 (base 2), A325644 (base 4), A325645 (base 5), A325692 (base 6), A325693 (base 7), A325805 (base 8), A325829 (base 9), A103205 (base 10). %Y A109681 Cf. A030341. %K A109681 nonn,nice,easy,base %O A109681 0,3 %A A109681 _Philippe Deléham_, Aug 08 2005 %E A109681 Conjectured g.f. and recurrence removed by _Georg Fischer_, Mar 13 2020