A109692 Triangle of coefficients in expansion of (1+x)*(1+3x)*(1+5x)*(1+7x)*...*(1+(2n-1)x).
1, 1, 1, 1, 4, 3, 1, 9, 23, 15, 1, 16, 86, 176, 105, 1, 25, 230, 950, 1689, 945, 1, 36, 505, 3480, 12139, 19524, 10395, 1, 49, 973, 10045, 57379, 177331, 264207, 135135, 1, 64, 1708, 24640, 208054, 1038016, 2924172, 4098240, 2027025
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 4, 3; 1, 9, 23, 15; 1, 16, 86, 176, 105; 1, 25, 230, 950, 1689, 945; 1, 36, 505, 3480, 12139, 19524, 10395; ...
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Crossrefs
Programs
-
Maple
nmax:=8; mmax:=nmax: for n from 0 to nmax do a(n, n) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, 0):=1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := a(n-1,m) + (2*n-1)*a(n-1,m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
Formula
T(n,m) = T(n-1,m) + (2*n-1)*T(n-1,m-1) with T(n,n) = (2*n-1)!! and T(n,0) = 1. - Johannes W. Meijer, Jun 08 2009
Comments