cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109693 Decimal expansion of Sum_{k>=1} 1/sigma(k)^2.

Original entry on oeis.org

1, 3, 0, 6, 4, 5, 6, 5, 1, 2, 0, 3, 8, 9, 5, 0, 5, 6, 8, 0, 1, 0, 7, 4, 9, 4, 8, 7, 0, 9, 1, 2, 7, 1, 5, 4, 9, 7, 5, 8, 3, 9, 0, 7, 9, 1, 5, 6, 6, 4, 9, 1, 0, 3, 7, 3, 6, 0, 9, 6, 9, 9, 5, 9, 8, 6, 1, 5, 3, 4, 2, 6, 4, 5, 7, 6, 6, 8, 2, 8, 7, 1, 5, 9, 9, 8, 1
Offset: 1

Views

Author

Keywords

Examples

			1.3064565120...
		

Crossrefs

Cf. A000203 (sigma function), A072861.

Programs

  • Mathematica
    $MaxExtraPrecision = m = 1000; f[p_, m_] := 1 + Sum[(p - 1)^2/(p^(k + 1) - 1)^2, {k, 1, m}]; c = Rest[CoefficientList[Series[Log[f[1/x, m]], {x, 0, m}], x]]*Range[m]; RealDigits[f[2, Infinity] * Exp[NSum[Indexed[c, n]*((PrimeZetaP[n] - 1/2^n)/n), {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* Amiram Eldar, Nov 14 2020 *)
  • PARI
    my(N=1000000000); prodeuler(p=2,N, sum(k=1,200/log(p),if(k==1,1.,1./((p^k-1)/(p-1))^2)))*(1+1/N/log(N))

Formula

Product_{p prime} Sum_{k>=0} 1/sigma(p^k)^2.

Extensions

More terms from Amiram Eldar, Nov 14 2020