cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109694 Decimal expansion of Sum_{n>=1} 1/sigma_2(n).

Original entry on oeis.org

1, 5, 3, 7, 8, 1, 2, 8, 9, 1, 8, 2, 7, 2, 5, 6, 1, 6, 2, 5, 3, 8, 6, 6, 1, 0, 0, 2, 7, 3, 8, 2, 6, 8, 3, 3, 0, 9, 1, 9, 3, 6, 0, 0, 4, 9, 4, 7, 3, 2, 2, 3, 5, 4, 9, 2, 9, 6, 1, 7, 6, 8, 9, 6, 5, 9, 4, 2, 6, 3, 3, 0, 4, 4, 5, 3, 1, 0, 4, 1, 0, 2, 3, 9, 5, 0, 1, 5, 5, 6, 7, 6, 0, 5, 3, 2, 3, 5, 9, 4, 8, 9, 1, 6, 0
Offset: 1

Views

Author

Keywords

Examples

			1.5378128918272561625386610027382683309193600494732235492961768965942633...
		

Crossrefs

Cf. A001157 (sigma_2), A064602.

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; Do[Clear[f]; f[p_] := (1 + Sum[(p^2 - 1)/(p^(2*e + 2) - 1), {e, 1, emax}]); m = 1000; cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2]*Exp[N[Sum[cc[[n]] * (PrimeZetaP[n] - 1/2^n), {n, 2, m}], 120]]], {emax, 100, 400, 100}] (* Vaclav Kotesovec, Sep 19 2020 *)
  • PARI
    N=10^9; prodeuler(p=2,N, sum(k=1,200/log(p),if(k==1,1.,1./((p^(2*k)-1)/(p^2-1))))) \\ The output is 1.537812891756...

Formula

Product_p Sum_{k>=0} 1/sigma_2(p^k).

Extensions

More digits from Vaclav Kotesovec, Sep 19 2020