A109696 Decimal expansion of root of 1 - Sum_{n>=0} 1/x^(2^n).
1, 7, 6, 6, 3, 9, 8, 1, 1, 4, 5, 5, 0, 1, 7, 3, 5, 9, 7, 2, 2, 8, 4, 8, 8, 3, 9, 2, 4, 4, 0, 0, 9, 9, 7, 3, 0, 2, 3, 2, 0, 6, 9, 2, 8, 7, 9, 5, 7, 0, 7, 2, 7, 7, 5, 2, 7, 8, 2, 8, 5, 0, 7, 4, 4, 0, 8, 3, 8, 4, 3, 4, 0, 5, 2, 4, 9, 8, 8, 3, 1, 1, 7, 9, 0, 4, 0, 6, 9, 7, 2, 7, 2, 0, 4, 5, 7, 9, 5, 8, 2, 4, 7, 9, 9
Offset: 1
Examples
1.766398114550173597228488392440099730232069287957072775...
Crossrefs
This is the limit ratio between consecutive terms of A023359.
Programs
-
Mathematica
RealDigits[ FindRoot[1 - Sum[1/(x^(2^n)), {n, 0, 8}] == 0, {x, 1.7}, WorkingPrecision -> 128][[1, 2]], 10, 128][[1]] (* Robert G. Wilson v, Aug 08 2005 *)
-
PARI
solve(x=1,2,1-sum(k=0,8,1./x^(2^k)))