This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109700 #17 Mar 20 2017 12:46:54 %S A109700 1,0,0,0,1,0,0,0,1,1,0,0,1,1,1,0,1,1,2,1,1,1,2,2,2,1,2,3,4,2,2,3,5,4, %T A109700 3,3,6,6,6,4,6,7,9,7,7,8,11,11,11,9,12,14,16,13,14,16,21,20,19,18,24, %U A109700 26,27,24,27,31,36,34,34,35,43,45,47,43,49,55,62,58,59,63,75,77,77,75,87 %N A109700 Number of partitions of n into parts each equal to 4 mod 5. %H A109700 Vaclav Kotesovec, <a href="/A109700/b109700.txt">Table of n, a(n) for n = 0..10000</a> %F A109700 G.f.: 1/product(1-x^(4+5j), j=0..infinity). - _Emeric Deutsch_, Mar 30 2006 %F A109700 a(n) ~ Gamma(4/5) * exp(Pi*sqrt(2*n/15)) / (2^(19/10) * 3^(2/5) * 5^(1/10) * Pi^(1/5) * n^(9/10)) * (1 - (9*sqrt(6/5)/(5*Pi) + Pi/(120*sqrt(30))) / sqrt(n)). - _Vaclav Kotesovec_, Feb 27 2015, extended Jan 24 2017 %F A109700 a(n) = (1/n)*Sum_{k=1..n} A284103(k)*a(n-k), a(0) = 1. - _Seiichi Manyama_, Mar 20 2017 %e A109700 a(30)=2 since 30 = 14+4+4+4+4 = 9+9+4+4+4 %p A109700 g:=1/product(1-x^(4+5*j),j=0..25): gser:=series(g,x=0,95): seq(coeff(gser,x,n),n=0..90); # _Emeric Deutsch_, Mar 30 2006 %t A109700 nmax=100; CoefficientList[Series[Product[1/(1-x^(5*k+4)), {k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Feb 27 2015 *) %Y A109700 Cf. A284103. %Y A109700 Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), A035462 (m=4), this sequence (m=5), A109702 (m=6), A109708 (m=7). %K A109700 nonn %O A109700 0,19 %A A109700 _Erich Friedman_, Aug 07 2005 %E A109700 More terms from _Michael Somos_, Aug 10 2005