This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109704 #16 Mar 28 2017 14:48:13 %S A109704 1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,1,2,1,3,1,3,1,3,2,3,3,3,4,3,4,4,4,6,4, %T A109704 7,4,8,5,8,7,8,9,8,10,9,11,12,11,15,11,17,12,18,15,19,19,19,22,20,24, %U A109704 24,25,29,26,34,27,37,31,39,38,40,44,42,49,47,52,55,54,64,56,71,62,76,72,79 %N A109704 Number of partitions of n into parts each equal to 2 mod 7. %H A109704 Vaclav Kotesovec, <a href="/A109704/b109704.txt">Table of n, a(n) for n = 0..10000</a> %F A109704 G.f.: 1/product(1-x^(2+7j), j=0..infinity). - _Emeric Deutsch_, Apr 14 2006 %F A109704 a(n) ~ Gamma(2/7) * exp(Pi*sqrt(2*n/21)) / (2^(23/14) * 3^(1/7) * 7^(5/14) * Pi^(5/7) * n^(9/14)) * (1 + (11*Pi/(168*sqrt(42)) - 9*sqrt(3/14)/(7*Pi)) / sqrt(n)). - _Vaclav Kotesovec_, Feb 27 2015, extended Jan 24 2017 %F A109704 a(n) = (1/n)*Sum_{k=1..n} A284443(k)*a(n-k), a(0) = 1. - _Seiichi Manyama_, Mar 28 2017 %e A109704 a(18)=3 because we have 18=16+2=9+9=2+2+2+2+2+2+2+2+2. %p A109704 g:=1/product(1-x^(2+7*j),j=0..20): gser:=series(g,x=0,87): seq(coeff(gser,x,n),n=0..84); # _Emeric Deutsch_, Apr 14 2006 %t A109704 nmax=100; CoefficientList[Series[Product[1/(1-x^(7*k+2)),{k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Feb 27 2015 *) %K A109704 nonn %O A109704 0,17 %A A109704 _Erich Friedman_, Aug 07 2005 %E A109704 Changed offset to 0 and added a(0)=1 by _Vaclav Kotesovec_, Feb 27 2015