cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109777 G.f. = f(x), where f(x)^2 = o.g.f. for A088313 (with offset 0).

Original entry on oeis.org

1, 1, 3, 15, 101, 829, 7891, 84735, 1009065, 13170841, 186798003, 2859068831, 46960097413, 823787983021, 15370572776091, 303929827526887, 6348320745774993, 139663855708967665, 3227812335094695171, 78180132507785056399, 1980181972528939129861, 52344600987011191983613
Offset: 0

Views

Author

N. J. A. Sloane and Nadia Heninger, Aug 15 2005

Keywords

Examples

			The present sequence has g.f. f(x) = 1 + x + 3*x^2 + 15*x^3 + ...
A088313 [1,2,7,36,242,...] has e.g.f. = sinh(x/(1-x)) = x + x^2 + 7/6*x^3 + 3/2*x^4 + 241/120*x^5 + 65/24*x^6 + 18271/5040*x^7 + ... and (with offset 0) o.g.f. = 1 + 2*x^2 + 7*x^3 + 36*x^4 + ... = f(x)^2.
		

Programs

  • Mathematica
    nmax = 22;
    f[x_] = Sqrt[Sum[SeriesCoefficient[Sinh[x/(1-x)], {x, 0, n}] n! x^n, {n, 0, nmax}]] + O[x]^nmax // Normal;
    List @@ f[x] /. x -> 1 (* Jean-François Alcover, Oct 08 2018 *)