cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109801 Cumulative sum of squares of primes indexed by squares.

This page as a plain text file.
%I A109801 #6 Nov 21 2013 12:48:43
%S A109801 4,53,582,3391,12800,35601,87130,183851,359412,652093,1089014,1772943,
%T A109801 2791024,4214273,6250602,8871763,12402404,16994853,22933822,30446903,
%U A109801 39951792,51930313,66393122,84125643,105627412,131140013,161599374
%N A109801 Cumulative sum of squares of primes indexed by squares.
%C A109801 Related to Prime(1^2) + prime(2^2) + ... + prime(n^2) (A109724).
%F A109801 (Prime[1^2])^2 + (prime[2^2])^2 + ... + (prime[n^2])^2. a(n+1) = a(n) + (A011757(n+1))^2.
%e A109801 a(1) = 4 because (prime[1^2])^2 = (prime[1])^2 = 2^2.
%e A109801 a(2) = 53 because (prime[1^2])^2 + (prime[2^2])^2 = 2^2 + 7^2 = 4 + 49 = 53 (which is prime).
%e A109801 a(3) = 582 because (prime[1^2])^2 + (prime[2^2])^2 + (prime[3^2])^2 = 2^2 + 7^2 + 23^2 = 582.
%e A109801 a(4) = 582 because (prime[1^2])^2 + (prime[2^2])^2 + (prime[3^2])^2 + (prime[4^2])^2 = 2^2 + 7^2 + 23^2 + 53^2 = 3391 (which is prime).
%e A109801 a(32) = a(31) + (prime[32^2])^2 = 345995122 + 8161^2 = 412597043 (which is prime).
%e A109801 a(34) = a(33) + (prime[34^2])^2 = 488932212 + 9341^2 = 576186493 (which is prime).
%t A109801 Accumulate[Prime[Range[30]^2]^2] (* _Harvey P. Dale_, Mar 28 2012 *)
%Y A109801 Cf. A000040, A000290, A000583, A011757, A109724, A109770.
%K A109801 nonn
%O A109801 1,1
%A A109801 _Jonathan Vos Post_, Aug 15 2005