This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109805 #20 Sep 20 2021 09:04:15 %S A109805 9,20,42,66,78,102,114,230,232,248,370,246,258,470,636,472,488,670, %T A109805 426,584,790,830,1246,1164,606,618,642,654,2034,2286,1310,1096,1668, %U A109805 1788,1208,1884,1630,1670,2076,1432,2172,2292,1158,1182,2786,5064,3568,1362 %N A109805 a(n) = prime(n+2)*prime(n+1) - prime(n)*prime(n+1). %C A109805 9 is the only semiprime of the form prime(n+2)*prime(n+1) - prime(n)*prime(n+1). %C A109805 First differences of A006094. [_Reinhard Zumkeller_, Mar 13 2011] %H A109805 Vincenzo Librandi, <a href="/A109805/b109805.txt">Table of n, a(n) for n = 1..1000</a> %t A109805 Table[Prime[n + 1]*(Prime[n + 2] - Prime[n]), {n, 48}] (* _Ray Chandler_, Aug 17 2005 *) %t A109805 #[[2]](#[[3]]-#[[1]])&/@Partition[Prime[Range[50]],3,1] (* _Harvey P. Dale_, Apr 01 2018 *) %o A109805 (Python) %o A109805 from sympy import prime, primerange %o A109805 def aupton(nn): %o A109805 alst, prevp, prev_prod = [], 2, 6 %o A109805 for p in primerange(3, prime(nn+2)+1): %o A109805 cur_prod = prevp * p %o A109805 alst.append(cur_prod - prev_prod) %o A109805 prevp = p %o A109805 prev_prod = cur_prod %o A109805 return alst[1:] %o A109805 print(aupton(48)) # _Michael S. Branicky_, Sep 20 2021 %Y A109805 Cf. A006094. %Y A109805 The largest prime factor of a(n) gives the sequence A065091. %K A109805 easy,nonn %O A109805 1,1 %A A109805 _Giovanni Teofilatto_, Aug 16 2005 %E A109805 Edited and extended by _Ray Chandler_, Aug 17 2005