cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A109876 Triangle read by rows: a(n, n) = n! and for 1 <= k < n, a(n, k) = Sum_{i=0..n-1} Product_{j=i+1..i+k} f(j, n), where for x <= y, f(x, y) = x and for x > y, f(x, y) = x-y.

Original entry on oeis.org

1, 3, 2, 6, 11, 6, 10, 24, 50, 24, 15, 45, 120, 274, 120, 21, 76, 252, 720, 1764, 720, 28, 119, 476, 1680, 5040, 13068, 5040, 36, 176, 828, 3520, 12960, 40320, 109584, 40320, 45, 249, 1350, 6750, 29880, 113400, 362880, 1026576, 362880, 55, 340, 2090, 12048
Offset: 1

Views

Author

Amarnath Murthy, Jul 10 2005

Keywords

Comments

The first four columns (excluding the initial term of each) are A000217 (triangular numbers), A006527, A062026 and A062027. The first and third diagonals are both A000142 (factorials). The second diagonal is A000254.
Without the exception for k = n, a(n, n) would be n*n! (A001563(n)). For example, a(3, 3) would be 1*2*3 + 2*3*1 + 3*1*2 instead of 1*2*3. The author's original description did not mention the exception. I guess it didn't make sense to him to add n identical terms. - David Wasserman, Oct 01 2008

Examples

			a(5, 3) = 1*2*3 + 2*3*4 + 3*4*5 + 4*5*1 + 5*1*2 = 120.
		

Crossrefs

Cf. A109877.

Programs

  • PARI
    f(x, y) = if (x > y, x - y, x);
    a(n, k) = if (n == k, n!, sum (i = 0, n - 1, prod (j = i + 1, i + k, f(j, n)))); \\ David Wasserman, Oct 01 2008

Extensions

Edited and extended by David Wasserman, Oct 01 2008
Showing 1-1 of 1 results.