This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109956 #28 May 26 2025 09:52:53 %S A109956 1,-1,1,3,-4,1,-12,18,-7,1,55,-88,42,-10,1,-273,455,-245,75,-13,1, %T A109956 1428,-2448,1428,-510,117,-16,1,-7752,13566,-8379,3325,-910,168,-19,1, %U A109956 43263,-76912,49588,-21252,6578,-1472,228,-22,1,-246675,444015,-296010,134550,-45630,11700,-2223,297,-25,1 %N A109956 Inverse of Riordan array (1/(1-x), x/(1-x)^3), A109955. %C A109956 Riordan array (g,f) where f/(1-f)^3=x and g=1-f. %C A109956 First column is (-1)^n*binomial(3n,n)/(2n+1), a signed version of A001764. %C A109956 Second column is a signed version of A006629. %C A109956 Diagonal sums are A109957. %H A109956 Paul Barry, <a href="https://arxiv.org/abs/2505.16718">d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths</a>, arXiv:2505.16718 [math.CO], 2025. See p. 13. %H A109956 Paul Drube, <a href="https://arxiv.org/abs/2007.01892">Generalized Path Pairs and Fuss-Catalan Triangles</a>, arXiv:2007.01892 [math.CO], 2020. See Figure 4 p. 8 (up to signs). %F A109956 Number triangle T(n, k) = (-1)^(n-k)*((3k+1)/(2n+k+1))*binomial(3n, n-k). %F A109956 From _Werner Schulte_, Oct 27 2015: (Start) %F A109956 If u(m,n) = (-1)^n*(Sum_{k=0..n} T(n,k)*((m+1)*k+1)) and v(m,n) = (-1)^n*(Sum_{k=0..n} (-1)^k*T(n,k)*m^k) and D(x) is the g.f. of A001764 then P(m,x) = Sum_{n>=0} u(m,n)*x^n = 1-(m+1)*x*D(x)^2 and Q(m,x) = Sum_{n>=0} v(m,n)*x^n = 1/P(m,x). %F A109956 If G(k,x) is the g.f. of column k (k>=0) then G(k,x) = G(0,x)^(3*k+1). (End) %e A109956 Triangle begins: %e A109956 1; %e A109956 -1, 1; %e A109956 3, -4, 1; %e A109956 -12, 18, -7, 1; %e A109956 55, -88, 42, -10, 1; %e A109956 -273, 455, -245, 75, -13, 1; %e A109956 ... %p A109956 # Function RiordanSquare defined in A321620. %p A109956 tt := sin(arcsin(3*sqrt(x*3/4))/3)/sqrt(x*3/4): R := RiordanSquare(tt, 11): %p A109956 seq(seq(LinearAlgebra:-Row(R,n)[k]*(-1)^(n+k), k=1..n), n=1..11); # _Peter Luschny_, Nov 27 2018 %t A109956 T[n_, k_] := (-1)^(n - k)((3k + 1)/(2n + k + 1)) Binomial[3n, n - k]; %t A109956 Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* _Jean-François Alcover_, Jun 13 2019 *) %o A109956 (PARI) tabl(nn) = {my(m = matrix(nn, nn, n, k, if (n<k, 0, binomial(n+2*k-3, 3*k-3)))); m = 1/m; for (n=1, nn, for (k=1, n, print1(m[n, k], ", ");); print(););} \\ _Michel Marcus_, Nov 20 2015 %Y A109956 Cf. A001764, A109955, A109957, A321620. %K A109956 easy,sign,tabl %O A109956 0,4 %A A109956 _Paul Barry_, Jul 06 2005