A109971 Inverse of Riordan array (1,x(1-x)^2), A109970.
1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 30, 18, 6, 1, 0, 143, 88, 33, 8, 1, 0, 728, 455, 182, 52, 10, 1, 0, 3876, 2448, 1020, 320, 75, 12, 1, 0, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 0, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 0, 690690, 444015, 197340
Offset: 0
Examples
Rows begin 1; 0,1; 0,2,1; 0,7,4,1; 0,30,18,6,1; 0,143,88,33,8,1; Production array begins 0, 1 0, 2, 1 0, 3, 2, 1 0, 4, 3, 2, 1 0, 5, 4, 3, 2, 1 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1 0, 8, 7, 6, 5, 4, 3, 2, 1 0, 9, 8, 7, 6, 5, 4, 3, 2, 1 ... - _Philippe Deléham_, Mar 05 2013
Links
- Naiomi Cameron, J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
- W.-j. Woan, The Lagrange inversion formula and divisibility properties, JIS 10 (2007) 07.7.8, example 4.
Crossrefs
Essentially the same as A092276.
Formula
Number triangle T(0, 0)=1, T(0, k)=0, k>0, T(n, k)=(k/n)*binomial(3n-k-1, n-k) otherwise; Riordan array (1, f) where f(1-f)^2=x.
T(n, k)=sum{j=0..n, ((3j+1)/(2n+j+1))(-1)^(j-k)*C(3n, 2n+j)C(j, k)}; - Paul Barry, Oct 07 2005
T(n,k)=binomial(3n-k,n-k)*2k/(3n-k). (Paul Barry, May 18 2006)
Comments