This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109983 #30 Sep 03 2024 21:01:56 %S A109983 1,0,1,2,0,0,1,6,6,0,0,0,1,12,30,20,0,0,0,0,1,20,90,140,70,0,0,0,0,0, %T A109983 1,30,210,560,630,252,0,0,0,0,0,0,1,42,420,1680,3150,2772,924,0,0,0,0, %U A109983 0,0,0,1,56,756,4200,11550,16632,12012,3432 %N A109983 Triangle read by rows: T(n, k) (0<=k<=2n) is the number of Delannoy paths of length n, having k steps. %C A109983 A Delannoy path of length n is a path from (0, 0) to (n, n), consisting of steps E = (1,0), N = (0,1) and D = (1,1). %C A109983 Row n has 2*n+1 terms, the first n of which are 0. %C A109983 Row sums are the central Delannoy numbers (A001850). %C A109983 Column sums are the central trinomial coefficients (A002426). %H A109983 Reinhard Zumkeller, <a href="/A109983/b109983.txt">Rows n = 0..100 of triangle, flattened</a> %H A109983 Hsien-Kuei Hwang and Satoshi Kuriki, <a href="https://arxiv.org/abs/2404.06040">Integrated empirical measures and generalizations of classical goodness-of-fit statistics</a>, arXiv:2404.06040 [math.ST], 2024. See p. 11. %H A109983 Robert A. Sulanke, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Sulanke/delannoy.html">Objects Counted by the Central Delannoy Numbers</a>, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5. %F A109983 T(n, k) = binomial(n, 2*n-k) binomial(k, n). %F A109983 T(n, k) = A104684(n, 2*n-k). %F A109983 G.f.: 1/sqrt((1 - t*z)^2 - 4*z*t^2). %F A109983 T(n, 2*n) = binomial(2*n, n) (A000984). %F A109983 Sum_{k=0..n} k*T(n, k) = A109984(n). %F A109983 T(n, k) = A063007(n, k-n). - _Michael Somos_, Sep 22 2013 %e A109983 T(2, 3) = 6 because we have DNE, DEN, NED, END, NDE and EDN. %e A109983 Triangle begins %e A109983 1; %e A109983 0,1,2; %e A109983 0,0,1,6,6; %e A109983 0,0,0,1,12,30,20; %e A109983 ... %p A109983 T := (n,k)->binomial(n,2*n-k)*binomial(k,n): %p A109983 for n from 0 to 8 do seq(T(n,k),k=0..2*n) od; # yields sequence in triangular form %p A109983 # Alternative: %p A109983 gf := ((1 - x*y)^2 - 4*x^2*y)^(-1/2): %p A109983 yser := series(gf, y, 12): ycoeff := n -> coeff(yser, y, n): %p A109983 row := n -> seq(coeff(expand(ycoeff(n)), x, k), k=0..2*n): %p A109983 seq(row(n), n=0..7); # _Peter Luschny_, Oct 28 2020 %o A109983 (PARI) {T(n, k) = binomial(n, k-n) * binomial(k, n)} /* _Michael Somos_, Sep 22 2013 */ %o A109983 (Haskell) %o A109983 a109983 n k = a109983_tabf !! n !! k %o A109983 a109983_row n = a109983_tabf !! n %o A109983 a109983_tabf = zipWith (++) (map (flip take (repeat 0)) [0..]) a063007_tabl %o A109983 -- _Reinhard Zumkeller_, Nov 18 2014 %Y A109983 Cf. A001850, A002426, A000984, A063007, A104684, A109984. %K A109983 nonn,tabf %O A109983 0,4 %A A109983 _Emeric Deutsch_, Jul 07 2005