This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A109998 #19 Apr 03 2023 10:36:10 %S A109998 17,43,67,71,101,103,109,127,137,149,151,163,181,197,223,241,257,269, %T A109998 283,311,317,349,353,373,389,401,409,433,449,461,463,487,521,523,557, %U A109998 569,571,599,617,631,643,647,677,701,709,739,751,769,773,787,797,821 %N A109998 Non-Cunningham primes: primes isolated from any Cunningham chain under any iteration of 2p+-1 or (p+-1)/2. %C A109998 The condition that neither 2p - 1 nor 2p + 1 be prime is equivalent to ((p-1) mod 3 = 0) or ((p+1) mod 3 = 0). For example, the prime p = 2^607 - 1 is not in this sequence because p + 1 mod 3 = 2. - _Washington Bomfim_, Oct 30 2009 %H A109998 Chris Caldwell's Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=CunninghamChain">Cunningham chains</a>. %H A109998 Douglas S. Stones, <a href="http://arxiv.org/abs/0908.2166">On prime chains</a>, arXiv:0908.2166 [math.NT] [From _Washington Bomfim_, Oct 30 2009, edited by _R. J. Mathar_, Mar 01 2010] %e A109998 a(1) = 17 is here because 17 * 2 + 1 = 35, 17 * 2 - 1 = 33; (17+1)/2 = 9, (17-1)/2 = 8: four composite numbers. %t A109998 nonCunninghamPrimes = {}; Do[p = Prime[n]; If[!PrimeQ[2p - 1] && !PrimeQ[2p + 1] && !PrimeQ[(p - 1)/2] && !PrimeQ[(p + 1)/2], AppendTo[nonCunninghamPrimes, p]], {n, 6!}]; nonCunninghamPrimes (* _Vladimir Joseph Stephan Orlovsky_, Mar 22 2009 *) %Y A109998 Cf. A005385, A005383, A060254, A005384, A005382, A068497, A059455, A059762, A057326, A023272, A023302, A059764, A057328, A023330, A005602, A064812, A005603. %K A109998 easy,nonn %O A109998 1,1 %A A109998 _Alexandre Wajnberg_, Sep 01 2005 %E A109998 Corrected and extended by _Ray Chandler_, Sep 02 2005 %E A109998 Replaced link to cached arXiv URL with link to the abstract - _R. J. Mathar_, Mar 01 2010