This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110002 #17 Apr 01 2024 10:05:46 %S A110002 1,2,3,4,5,6,7,8,9,22,44,222,292,414,646,717,848,979,27072,28882, %T A110002 45954,74247,90109,96569,118811,2376732,5136315,5185815,5266625, %U A110002 5635365,5684865,6344436,7424247,7481847,7484847,7929297,9858589,12333321,21922912,32255223 %N A110002 Palindromes whose perfect deficiency (A109883) is also palindromic. %H A110002 Michael S. Branicky, <a href="/A110002/b110002.txt">Table of n, a(n) for n = 1..101</a> (all terms < 10^14) %t A110002 subtract = If[ #1 < #2, Throw[ #1], #1 - #2]&;d[n_] := Catch @ Fold[subtract, n, Divisors @ n];Select[Range[10000000],PalindromeQ[#]&&PalindromeQ[d[#]]&] (* _James C. McMahon_, Mar 31 2024 *) %o A110002 (Python) # uses imports, function in A109883 %o A110002 from itertools import count, islice, product %o A110002 def ispal(n): return (s:=str(n)) == s[::-1] %o A110002 def pals(): # generator of palindromes %o A110002 digits = "0123456789" %o A110002 yield from map(int, digits) %o A110002 for d in count(2): %o A110002 for f in "123456789": %o A110002 for p in product(digits, repeat=d//2-1): %o A110002 left = f + "".join(p); right = left[::-1] %o A110002 for mid in [[""], digits][d%2]: %o A110002 yield int(left + mid + right) %o A110002 def agen(): yield from (p for p in pals() if p>0 and ispal(A109883(p))) %o A110002 print(list(islice(agen(), 40))) # _Michael S. Branicky_, Mar 31 2024 %Y A110002 Cf. A002113, A109883. %K A110002 base,nonn %O A110002 1,2 %A A110002 _Jason Earls_, Sep 02 2005 %E A110002 a(38) and beyond from _Michael S. Branicky_, Mar 31 2024