This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110022 #10 Apr 03 2023 10:36:11 %S A110022 1531,6841,15391,44371,57991,83431,105871,145021,150151,199621,209431, %T A110022 212851,231241,242551,291271,319681,346141,377491,381631,451411, %U A110022 481021,506791,507781,512821,537811,588871,680431,727561,749761,782911,787711 %N A110022 Primes starting a Cunningham chain of the second kind of length 5. %C A110022 The definition indicates that each chain is exactly 5 primes long (i.e. the chain cannot be a subchain of a longer one). That's why this sequence is different from A057328 which gives also primes included in longer chains (thus not "starting" them), as 16651, starting a seven primes chain, or 33301, second prime of the same seven primes chain. %H A110022 Chris Caldwell's Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=CunninghamChain">Cunningham chains</a>. %H A110022 G. Löh, <a href="http://www.jstor.org/stable/2008735">Long chains of nearly doubled primes</a>, Math. Comp. vol. 53 no. 188 (1989) pp 751-759. %e A110022 6841 is here because: 6841 through <2p-1> -> 13681-> 27361-> 54721-> 109441 and the chain ends here since 2*109441-1=13*113*149 is composite. %p A110022 isA110022 := proc(p) local pitr,itr ; if isprime(p) then if isprime( (p+1)/2 ) then RETURN(false) ; else pitr := p ; for itr from 1 to 4 do pitr := 2*pitr-1 ; if not isprime(pitr) then RETURN(false) ; fi ; od: pitr := 2*pitr-1 ; if isprime(pitr) then RETURN(false) ; else RETURN(true) ; fi ; fi ; else RETURN(false) ; fi ; end: for i from 2 to 200000 do p := ithprime(i) ; if isA110022(p) then printf("%d,",p) ; fi ; od: # _R. J. Mathar_, Jul 23 2008 %Y A110022 Cf. A023272, A023302, A023330, A005384, A005385, A059452, A059455, A007700, A059759, A059760, A059761, A059762, A059763, A059764, A059765, A038397, A104349, A091314, A069362, A016093, A014937, A057326. %K A110022 easy,nonn %O A110022 1,1 %A A110022 _Alexandre Wajnberg_, Sep 03 2005 %E A110022 Edited and extended by _R. J. Mathar_, Jul 23 2008